

Object-Oriented Software Engineering

Practical software development using UML and Java

Second edition

Object-Oriented Software
Engineering
Practical Software Development using UML and Java

Second edition

Timothy C. Lethbridge
Robert Laganiere

I
The McGraw-Hill Companies

London « Burr Ridge, IL « New York e St. Louis « San Francisco «Auckland
Bogotd « Caracas « Lisbon « Madrid « Mexico « Milan « Montreal « New Delhi
Panama e Parise San Juan « Sdo Paulo « Singapore «Tokyo « Toronto

Object-Oriented Software Engineering
Timothy C Lethbridge

Robert Laganiére

ISBN 0-07-70109082

% Education

Published by McGraw-Hill Education
Shoppenhangers Road

Maidenhead

Berkshire SL62QL

Telephone: 44 (0) 1628 502 500

Fax: 44 (0) 1628 770 224

Website: http://www.mcgraw-hill.co.uk

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
The Library of Congress data for this book has been applied for from the Library of
Congress

Publishing Director: Catriona King
Development Editor: Karen Mosman
Marketing Manager: Alice Duijser
Senior Production Manager: Max Elvey

Text Design by Mike Cotterell

Cover design by Ego Creative

Typeset at Neuadd Bwll, Llanwrtyd Wells

Printed and bound in the UK by Bell & Bain Ltd, Glasgow

Published by McGraw-Hill Education (UK) Limited an imprint of The McGraw-Hill
Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2005
by McGraw-Hill Education (UK) Limited. All rights reserved. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic
storage or transmission, or broadcast for distance learning.

ISBN 0-07-70109082 © 2005. Exclusive rights by The McGraw-Hill Companies, Inc. for

manufacture and export. This book cannot be re-exported from the country to which it
is sold by McGraw-Hill.

The McGraw-Hill companies

Contents

Foreword xi
Preface XV
Guided tour xxii
Technology to enhance learning and teaching XXiv
1 Software and software engineering 1
1.1 The nature of software 1
1.2 What is software engineering? 6
1.3 Software engineering as a branch of the engineering profession 8
1.4 Stakeholders in software engineering 10
1.5 Software quality 11
1.6 Software engineering projects 14
1.7 Activities common to software projects 16
1.8 The themes emphasized in this book 20
1.9 Difficulties and risks in software engineering as a whole 24
1.10 Summary 26
1.11 For more information 26

2 Review of object orientation 29
2.1 What is object orientation? 29
2.2 Classes and objects 31
2.3 Instance variables 36
2.4 Methods, operations and polymorphism 38
2.5 Organizing classes into inheritance hierarchies 39
2.6 The effect of inheritance hierarchies on polymorphism and variable declarations 45
2.7 Concepts that define object orientation 52
2.8 A program for manipulating postal codes 55
2.9 Classes for representing geometric points 57
2.10 Measuring the quality and complexity of a program 60
2.11 Difficulties and risks in programming language choice and OO programming 62
2.12 Summary 63

2.13 For more information 63

V1| Contents

3 Basing software development on reusable technology

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12

Reuse: building on the work and experience of others
Incorporating reusability and reuse into software engineering
Frameworks: reusable subsystems

The client-server architecture

Technology needed to build client-server systems

The Object Client-Server Framework (OCSF)

Basic description of OCSF - client side

Basic description of OCSF - server side

An instant messaging application using the OCSF

Difficulties and risks when considering reusable technology and
client-server systems

Summary

For more information

4 Developing requirements

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Domain analysis

The starting point for software projects

Defining the problem and the scope

What is a requirement?

Types of requirements

Use cases: describing how the user will use the system
Some techniques for gathering requirements

Types of requirements document

Reviewing requirements

Managing changing requirements

GPS-based Automobile Navigation Assistant (GANA)
Requirements for a feature of the SimpleChat instant messaging program
Difficulties and risks in domain and requirements analysis
Summary

For more information

5 Modeling with classes

5.1
5.2
5.3
5.4
55
5.6
5.7
5.8
59
5.10
5.11
5.12
513

What is UML?

Essentials of UML class diagrams

Associations and multiplicity

Generalization

Object diagrams

More advanced features of class diagrams

The basics of Object Constraint Language (OCL)
A class diagram for genealogy

The process of developing class diagrams
Implementing class diagrams in Java

Difficulties and risks when creating class diagrams
Summary

For more information

67
68
69
71
77
87
91
92
95
99

101
102
103

109
109
114
115
119
119
127
138
145
148
155
156
160
164
165
166

169
169
172
173
182
186
188
193
196
199
216
218
218
219

6 Using design patterns

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Introduction to patterns

The Abstraction—Occurrence pattern

The General Hierarchy pattern

The Player-Role pattern

The Singleton pattern

The Observer pattern

The Delegation pattern

The Adapter pattern

The Fagade pattern

The Immutable pattern

The Read-Only Interface pattern

The Proxy pattern

The Factory pattern

Enhancing OCSF to employ additional design patterns
Difficulties and risks when using design patterns
Summary

For more information

7 Focusing on users and their tasks

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

User-centered design

Characteristics of users

The basics of user interface design

Usability principles

Evaluating user interfaces

Implementing a simple GUI in Java
Difficulties and risks in user-centered design
Summary

For more information

8 Modeling interactions and behavior

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Interaction diagrams

State diagrams

Activity diagrams

Implementing classes based on interaction and state diagrams
Difficulties and risks in modeling interactions and behavior
Summary

For more information

9 Architecting and designing software

9.1
9.2

The process of design
Principles leading to good design
Design Principle 1: Divide and conquer
Design Principle 2: Increase cohesion where possible
Design Principle 3: Reduce coupling where possible
Design Principle 4: Keep the level of abstraction as high as possible

Contents V11

221
221
223
226
228
231
232
234
236
238
239
240
241
243
246
250
251
251

253
254
256
258
262
273
276
280
280
281

285
285
292
301
302
306
307
307

309
310
314
314
315
321
329

Vlll Contents

9.3
9.4
9.5
9.6

9.7
9.8
9.9
9.10
9.11

Design Principle 5: Increase reusability where possible
Design Principle 6: Reuse existing designs and code where possible
Design Principle 7: Design for flexibility
Design Principle 8: Anticipate obsolescence
Design Principle 9: Design for portability
Design Principle 10: Design for testability
Design Principle 11: Design defensively
Techniques for making good design decisions
Model Driven Development
Software architecture
Architectural patterns
The Multi-Layer architectural pattern
The Client-Server and other distributed architectural patterns
The Broker architectural pattern
The Transaction Processing architectural pattern
The Pipe-and-Filter architectural pattern
The Model-View-Controller (MVC) architectural pattern
The Service-Oriented architectural pattern
The Message-Oriented architectural pattern
Writing a good design document
Design of a feature for the SimpleChat instant messaging application
Difficulties and risks in design
Summary
For more information

10 Testing and inspecting to ensure high quality

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15

Basic definitions

Effective and efficient testing

Defects in ordinary algorithms

Defects in numerical algorithms

Defects in timing and co-ordination: deadlocks, livelocks and critical races
Defects in handling stress and unusual situations

Documentation defects

Writing formal test cases and test plans

Strategies for testing large systems

Inspections

Quality assurance in general

Test cases for phase 2 of the SimpleChat instant messaging system
Difficulties and risks in quality assurance

Summary

For more information

11 Managing the software process

11.1
11.2

What is project management?
Software process models

330
331
331
332
333
334
334
336
340
342
347
347
349
351
352
353
355
358
360
362
365
366
367
368

371
371
373
380
388
391
394
398
398
402
409
413
416
420
421
422

425
425
428

11.3
114
11.5
11.6
11.7
11.8
11.9

12 Review
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

Cost estimation

Building software engineering teams

Project scheduling and tracking

Contents of a project plan

Difficulties and risks in project management
Summary

For more information

Theme 1: Understanding the customer and user

Theme 2: Basing development on solid principles and reusable technology
Theme 3: Object orientation

Theme 4: Visual modeling using UML

Theme 5: Evaluation of alternatives in requirements and design

Theme 6: Incorporating quantitative and logical thinking

Theme 7: Iterative and agile development

Theme 8: Communicating effectively using documentation

Theme 9: Risk management in all software engineering activities

Where next?

Appendix A: Summary of the UML notation used in this book

Appendix B: Summary of the documentation types recommended in this book

Appendix C: System descriptions

Glossary

Contents

435
445
449
452
453
455
456

459
459
459
464
464
465
465
466
467
467
469

471

475

479

485

1X

Foreword

If a builder build a house for someone, and does not construct
it properly, and the house which he built falls in and kills its
owner, then that builder shall be put to death

Article 229 of the Code of Hammurabi (1780 BC).

This earliest recorded attempt to regulate the engineering profession reminds
us, in the bluntest way possible, that the paramount purpose of engineering and
engineering design is to serve the user. One would assume that the engineer’s
responsibility to users is so self evident that it goes without saying. Various
professional engineering societies have inculcated this into the core of the rules
that regulate the conduct of their members.

However, in the relatively young discipline of software engineering, this has
not yet fully permeated the professional culture. Part of it is due to the essential
nature of the software: like no other engineering medium, software provides the
shortest path from concept to reality. With no metal to bend, heavy weights to
lift, or large teams of people to mobilize, creativity is practically unhampered. In
the heady and seductive process of embodying ideas through software, users are
often forgotten or relegated to secondary status. In some cases, they are even
seen as a distraction whose idiosyncrasies merely get in the way of ‘elegant and
clean’ design. Software developers are notorious for their impatience with
anything that separates them from programming — the medium has become the
message. Symptomatically, the terms ‘hacking’ and ‘hacker’ have no equivalent
in any other engineering discipline.

It is interesting to note the dramatic impact that the concept of ‘use case’ has
had on the software community. This idea, introduced by Ivar Jacobson and his
colleagues a little over a decade ago, was lauded as revolutionary. Its essence lies
in the formal introduction of the concept of a user (an ‘actor’) into the software
design process. (The layperson can hardly be blamed for wondering ‘what took
them so long?” Hammurabi knew this almost 4000 years ago.)

Xll Foreword

Clearly, there is an imbalance of motivations here that needs to be set right:
the creative urge needs to be made subservient to the need to support the user.
This is something that has to be instilled from the first steps in a software
engineering education, and the book by Tim Lethbridge and Robert Laganiere
is an important contribution to this.

The authors build the book around nine ‘themes, auspiciously starting with
‘understanding the customer and user. (Many software practitioners do not
even differentiate between customers and users.) The themes are not dry
theorems but distillations of practical and proven domain knowledge drawn
from a wealth of experience in industrial software development. The book
abounds with pragmatic detail that is rarely found in textbooks. In fact, it is the
kind of textbook that, as a young engineering student, I wished I had, because it
describes the proverbial ‘real world.

The book does not shirk theory, quite to the contrary. However, the theory
comes alive because it is set in its full and proper context, comprising not only
the technical but the social and cultural aspects that often play an important role
in molding the theory. The reader not only learns why a particular technological
approach is good, but also its drawbacks and, perhaps equally importantly, its
history. (Some things - like the QWERTY keyboard - can only be understood
properly if one is familiar with their history.) They carefully point out the
controversial issues in modern software engineering without taking sides,
meticulously listing the arguments for each viewpoint.

The ‘engineering’ side of software engineering is extremely well represented
here and not just because the authors emphasize a user-centric approach.
Themes such as ‘incorporating quantitative thinking, ‘evaluation of alternatives
in requirements and design, ‘risk management, or ‘communicating effectively’
are all proven and effective techniques evolved from centuries of engineering
experience and which, unfortunately, are still not adequately applied in software
engineering. Yes, software is different from other forms of engineering in many,
many ways, but not so different that it cannot benefit from these lessons learned.
For example, the lack of quantitative thinking, including elementary risk
analysis, is probably one of the most common causes of software project failures.
And, no matter which statistics you read, more software projects fail than
succeed. (Thankfully, the engineers who design buildings and airplanes have a
much better record than their software counterparts.)

Model-driven development is another important thread throughout the
book. This relatively new approach to software development, which promises
to be the first true technological generational advance since the invention of
the compiler, is covered in detail, from the basic principles of object
orientation to the latest modeling languages and their use. The way of the
tuture lies here.

So, from the nuts and bolts of objects to the high vistas of software
architecture, from writing code to testing, from software development processes
to project management - it’s all gathered here. The breadth and depth of the
material covered is striking and impressive, yet it has been brought together

Foreword Xlll

quite seamlessly, all the pieces in their rightful places, in balance. Although
primarily conceived as a textbook, it will undoubtedly serve its readers as a
reference for years to come.

If a builder build a program for someone, and does not
construct it properly...

Bran Selic
August, 2004
Ottawa, Canada

Preface

Our focus in this book is software engineering knowledge and skills that readers
can put into immediate practical use. The book is designed to be used in second-
year post-secondary software engineering courses, although it has been used in
introductory software engineering courses at all levels. It will also be valuable to
programming practitioners who want to develop a better understanding of
modern software engineering.

We have taught software engineering courses for fourteen years, and have
attempted to tune the book so that it is both useful and enjoyable to students.
Feedback from former students has been gratifying — some have reported that they
regularly use it as a reference in their jobs. Our industrial experience performing
software development, consulting and professional training has also allowed us to
focus on material that is important to the employers of these students.

Using the book in a software engineering degree program

Software engineering is becoming an established discipline, separate from
computer science and computer engineering. As a witness to this, in 2004 The
IEEE Computer Society and the ACM approved Software Engineering 2004
(SE2004), a document outlining what should be taught in any undergraduate
software engineering program. Timothy Lethbridge played a leading role in that
project, and this book is specifically designed as a textbook for SE2004 course
SE201. See the web site http://sites.computer.org/ccse.

At the University of Ottawa, we teach the material in this book over a 12-week
period during the first semester of the second year. By that time, students have
completed two semesters of computer science - including object-oriented
programming in Java. They take a course in data structures and algorithms in
parallel with this course, and subsequently take advanced software engineering
courses that expand their knowledge of the material we introduce here.

Students who have studied the material in this course should be particularly
employable in summer jobs, co-op and sandwich work terms, and other forms
of industrial placement. Employers are looking for students who understand
what constitutes a good requirement, can apply fundamental design principles,

Xvi

Preface

can use UML properly, can translate requirements and designs into good quality
programs, and can effectively test those programs. This book gives a practical
grounding in all of these skills.

The book is structured so that in a 12-week course or unit, it can be taught
using three hours a week of classroom instruction, plus regular supervised and
unsupervised laboratory time. Each year we assign a selection of the exercises,
many of which students work on in groups. This second edition of the book
updates many exercises and introduces many new ones.

Suggested background

Prior to studying this book, readers should understand the basic notions of
object-oriented programming, although Chapter 2 gives a brief review of these
concepts. We have selected Java as the language used for programming examples
since it is a complete, simple and popular object-oriented language. Motivated
readers who know other object-oriented languages should be able to pick up the
necessary Java from the material provided in Chapter 2 and the book’s web site,
and as they work through the exercises.

Material on the web site

We have prepared a web site with many resources to support readers and
teachers. The address is http://www.lloseng.com.

Here you will find sets of presentation slides, source code, answers to exercises,
links to all the web-based references, a knowledge base summarizing many of the
concepts presented, videotapes of lectures, and various other learning aids.

There is also a publisher’s website at http://www.mhhe.com/lethbridge, where
you will find lecturer’s password-protected resources.

Themes taught throughout the book

Woven throughout the book are nine themes that we believe are basic to
contemporary software engineering. Each of these themes is revisited in many
chapters, and is taught in the context of concrete examples and exercises.

. Understanding the customer and the user. We emphasize domain analysis as

well as gathering and validating requirements. We place these in the context of
use case analysis and usability. Readers are asked to think in terms of what the
customer’s problem really is, what is realistic, etc. The purpose of software
engineering is described at the beginning of the book as solving customers’
problems, rather than developing software for its own sake.

. Basing development on solid principles and reusable technology. We

emphasize the necessity for software engineers to understand design principles
and have a thorough grasp of suitable technology before embarking on a
project. To ensure this is the case for the design work in this book, we first
review object-oriented principles. Later we discuss frameworks, a series of
design principles, and many design and architectural patterns.

Preface XVll

. Visual modeling using UML. We present key elements of UML, particularly
class, interaction and state diagrams. We do not cover all of UML and we do
not restrict our discussion to UML alone since it does not cover all of software
engineering. We emphasize that UML diagrams do not solve problems by
themselves, but are one of the many tools that software engineers should use as
a regular part of their work. For the second edition, we have updated the book
so that it is compliant with UML 2.0.

. Evaluation of alternatives in requirements and design. Throughout the book
we present alternatives with their advantages and disadvantages. We encourage
readers to record the rationale for each choice.

. Object orientation. We cover all aspects of object-oriented development,
including analysis, design, and programming. Ensuring that the reader sees
how to take projects all the way to implementation means that he or she gets
more than just an abstract view of the development process, and appreciates
the reasons for many design principles.

. Quantitative and logical thinking. We cover the essentials of software metrics
in several different chapters so that students can learn to think quantitatively.
We also promote the judicious application of logic as embodied in OCL and
assertions.

. Iterative and agile development. We strongly emphasize that readers should
follow an iterative approach to development. As project work, readers are asked
to perform requirements analysis, design and implementation very near the
beginning of the book, and then again several times throughout the book. To
accomplish this we introduce a complete project in Chapter 3. Initially, readers
are asked to make only a small change to this project in order to begin to
understand it. In Chapter 4, readers are then asked to write and review
requirements for new features to add to the system - again they design and
implement the features. Later, readers learn more details of topics such as
design and quality assurance, and are asked to apply what they learn to
successively more advanced changes to their project. Concepts from the agile
movement are also emphasized: developing in very small increments, test-first
development, etc.

. Communicating effectively using documentation. We encourage readers to
practice writing informative but concise documentation; we provide templates
and examples of each type of document.

. Risk management in all software engineering activities. Throughout the
book, we discuss many aspects of risk management, including evaluating
potential costs and risks on a regular basis, balancing risks with benefits,
avoiding doing work that is not worthwhile, and evolving plans as we learn
more information. We point out that the knowledge learned from the other
themes above can be applied to reduce risk.

XVlll Preface

Changes in the second edition

In the second edition, we have made a wide variety of small changes to keep up
with changes in the field. The following are some of the more significant
changes:

Covers UML 2.0.

Moves all discussion of use cases to Chapter 4.

Introduces model-driven development.

Discusses web-based software architectures and middleware.

Integrates discussion of agile approaches, and techniques made popular by
those approaches including refactoring and test-driven development.

Covers more of the essentials of measurement and metrics.

Incorporates many new and changed exercises. All exercises have been given a
new numbering scheme to prevent confusion with those in the first edition.

Structure of the book

Size

Depth

Examples and
exercises

Sequencing

The book is small enough so that instructors can realistically require students to
read it all during a 12-week course. We present a suggested schedule below.

Rather than covering all aspects of software engineering, we present in
reasonable depth a cohesive collection of material that will give readers a
foundation in topics central to the field. We focus on material that is
immediately applicable in industrial software projects.

Readers can practice applying the concepts, since we provide an extensive
set of examples and exercises. One set of project exercises is based on a fully
implemented small system, which we provide. This means that, rather than
always programming from scratch, readers are able to spend their time
thinking about higher-level analysis and design issues, yet they can still
practice implementation of their ideas. Readers also come to appreciate
reuse, since the implemented system is based on a framework that is
applicable to a wide variety of client-server systems. The exercises vary
widely in difficulty; some are easy and simply encourage the reader to think
about what they have read; others are intended to motivate advanced
readers. Many exercises have fully explained answers available in the
student’s answer manual; other answers are available in a manual only
available to instructors.

The sequence of material in the book is designed to allow students to rapidly
start work on real problems requiring analysis, design and implementation. As
readers perform several iterations of project work, we introduce topics they
will need in each iteration. The early part of the book, for example, introduces
the knowledge about object orientation and architecture that they will need to

Preface

understand the project work. Then we move on to requirements and object-
oriented analysis, focusing initially on use cases and static modeling. Later, we
introduce dynamic modeling.

Use of this book in a 12-week course

Week |

Weeks 2-3

Weeks 3-4

Weeks 4-5

Week 6

Week 7

Weeks 8-9

Weeks 9-10

Week |1

Week 12

The following is a suggested schedule for using this book in a second-year
university course. For the main body of the book, Chapters 3 to 10, the allocated
time corresponds roughly to the length of each chapter.

The authors use this book in a 12-week course, where each week has three
hours of lecture as well as three hours of lab and tutorial time. Students are
expected to read all the chapters, although the lectures focus most heavily on the
core material in Chapters 3 through 10, and particularly Chapters 3, 5, 8 and 9.

We also anticipate that students work on a selection of exercises with
deliverables about four times during the course. We also expect them to deliver
three iterations of the project. We have provided suggested project activities at
the end of many chapters.

Chapters 1 and 2: Introduction and review (1 week).

Chapter 3: Reuse and the client-server framework (1.5 weeks).
Project work: learning to use the client-server framework by making a minor
change to a system implemented using it.

Chapter 4: Domain analysis, use cases and requirements (1.5 weeks).
Project work: adding features following requirements analysis.

Chapter 5: OO analysis and modeling (1.5 weeks).
Project work: adding features that require considerable modeling.

Chapter 6: Design patterns (1 week).

Chapter 7: Use cases and user interfaces (0.5 weeks).
Project work: adding a GUL

Chapter 8: Dynamic modeling (1.5 weeks).

Chapter 9: Design principles and architecture (1.5 weeks).
Project work: detailed design of some features.

Chapter 10: Testing (1 week).
Project work: preparing a test plan.

Chapters 11 and 12: Introduction to project management and review (1 week).

Other orderings are possible. In particular, the order in which Chapters 6
through 11 can be covered is flexible. Also, parts of many chapters could be
skipped in order to give greater emphasis to other material.

X1x

XX

Preface

Acknowledgements

We would like to thank the following people who helped us improve this book:

Those who have contributed insights or helped edit the book. There are too
many to mention them all, but we would especially like to thank Rohit Bahl,
Bob Probert, K. Teresa Khidir, Francois Bélanger and Klaas van den Berg who
made particularly large contributions.

Judy Kavanagh, who worked on the knowledge base of the accompanying web
site and helped refine the glossary.

The University of Ottawa students in SEG2100 and SEG2500 with whom we
used this book and its beta versions for several years. Many of the approaches
to explaining things in the book arose from trying to answer tricky student
questions. Students have also pointed out many improvements, which we have
incorporated.

We would also like to thank our families who have had to put up with ridiculous
work schedules when deadline crunches approached.

The publishers would also like to thank the following reviewers who provided
helpful feedback on the first edition of this textbook: Muthu Ramachandran,
Leeds Metropolitan University, UK; Klaas van den Berg, Twente University, The
Netherlands; Renaat Verbruggen, Dublin City University, Republic of Ireland;
Paul Krause, University of Surrey, UK; Filip Vanderstappen, Erasmus University,
The Netherlands; Gero Wedemann, Fachhochschule Stralsund, Germany;
Radmila Juric, University of Westminster, UK; Willem-Jan van den Heuvel,
University of Tilburg, The Netherlands.

We would also like to thank the reviewers who read and commented on the
manuscript of the new edition: Boris Cogan, London Metropolitan University,
UK; Nicolas Gold, UMIST, UK; Cecilia Mascolo, University College London,
UK; Bruce R. maxim, University of Michigan-Dearborn, USA; Nikolay Y.
Nikolaev, Goldsmiths College, University of London, UK; Steve O’Connell,
University of Southampton, UK; Hakan Petersson, Chalmers University of
Technology, Sweden; Rebecca H. Rutherford, Southern Polytechnic State
University, USA; Karel van den Berg, Twente University, The Netherlands.

All the review comments were extremely helpful in developing the new
edition of this textbook.

Software and software
engineering

Guided tour

Learning Objectives
Each chapter opens with a set of learning objectives, summarising
what readers should learn from each chapter.

Boxes

The book includes example boxes that are designed to illustrate how
you can apply the main techniques learned. They may also offer extra
explanations of important ideas explored in the text.

Figures and Tables

Each chapter provides a number of figures and tables to help you to
visualise the software engineering models and concepts, and to
illustrate and summarise important ideas.

Summary of the UML notation
used in this book

Guided tour | XX111

Exercises

Each chapter in the book features a range of questions and exercises
that test your understanding of the techniques you have read about,
and apply software engineering methodology to real-world
situations. Solutions are available on the supporting website.

Definitions

Key terms are explained by clear and straightforward definitions so
that you can check you have understood. They are boxed in the text
for easy reference and revision.

Chapter summary and ‘for more information’ section

This section briefly reviews and reinforces the main topics you will
have covered in each chapter to ensure you have acquired a solid
understanding of the key topics. A section entitled for more
information’ directs you to useful websites, journal articles, books
and a variety of other resources to aid further study.

Appendices of notation

These appendices at the end of the book provide essential references
for your studies, including summaries of the UML notation,
documentation types, system descriptions, and a comprehensive
glossary.

Technology to enhance
learning and teaching

This book is supported by a publisher’s web site: http://mhhe.com/lethbridge.

The McGraw-Hill Online Learning
Center contains a range of resources for
lecturers to support their teaching of
Object-Oriented Software Engineering.

Available for lecturers:

B Chapter-by-chapter PowerPoint slides to
support delivery of topics in lectures

B A full set of solutions to the exercises
within the text, plus code.

Visit the web site to find out how to contact your local representative for a

password.

The authors have also developed a comprehensive web site to support the book
at: http://lloseng.com. Take advantage of the study tools offered to reinforce the
material you have read in the text, and to develop your knowledge of software
engineering further.

Resources for students include:

B Answers to selected textbook exercises,
enabling students to test their progress

M Source code and documentation
M Useful Web links and further reading
M A searchable glossary of key terms

Technology to enhance learning and teaching | XXV

For lecturers: Primis Content Center

If you need to supplement your course with
additional cases or content, create a
personalised e-Book for your students. Visit
http://www.primiscontentcenter.com or email
primis_euro@mcgraw-hill.com for more
information.

Study skills

We publish guides to help you study, research, pass exams and write essays, all
the way through your university studies.

http://www.openup.co.uk/ss/

Computing skills

If you would like to brush up on your computing skills, we have a range of titles
covering MS Office applications such as Word, Excel, PowerPoint, Access and
more: http://www.mcgraw-hill.co.uk/app.

Software and software
engineering

The software engineer’s job is to solve problems economically by developing
high-quality software. In this first chapter we will present important issues that
all software engineers should understand to do their jobs well.

In this chapter you will learn about the following

M How does software differ from other products? How does software change
over time? What do we mean when we talk about high-quality software?
What types of software are there and what are their main differences?

B How are software projects organized? How successful are typical projects?

M How can we define software engineering? Why will following a disciplined
approach to software engineering help us produce successful software
systems?

B What activities occur in every software project?

M What should we keep in mind as we perform any software engineering
activity?

[.I The nature of software

Similarly to mechanical engineers who design mechanical systems and electrical
engineers who design electrical systems, software engineers design software
systems. However, software differs in important ways from the types of artifacts
produced by other types of engineers:

M Software is largely intangible. Unlike most other engineering artifacts, you
cannot feel the shape of a piece of software, and its design can be hard to

2|

Chapter |
Software and software engineering

Offshoring: an exaggerated fear?

The software engineering labor market has been increasingly affected by the recent trend towards
offshoring: this occurs when organizations in developed countries outsource software development
to countries that have much lower labor costs yet have highly educated populations and are politically
stable. India and some Eastern European countries have particularly benefited from this. Many
economists believe offshoring represents a healthy redistribution of wealth that will result, in the
longer run, in increased wages and consumer demand in the recipient countries. Citizens of these
countries are also becoming big consumers of software, increasing the total market.

However, fear that offshoring will contribute to a lack of jobs is one factor that has caused
a sharp drop in university computing enrolments in many developed countries. This fear is
exaggerated for three reasons.

First, students studying computing still have a much higher chance of finding a job in their
field than students studying most other subjects. Second, as we will learn in this book, close
and constant interaction with end-users is essential to the development of quality software;
it will always therefore remain important to have a significant part of the development team
close to the user. And thirdly, as software development becomes distributed, there will be
an increasing need for the disciplined approaches to modeling, requirements, architecture and
quality assurance as taught in this book.

visualize. It is therefore difficult for people to assess its quality or to appreciate
the amount of work involved in its development. This is one of the reasons why
people consistently underestimate the amount of time it takes to develop a
software system.

B The mass-production of duplicate pieces of software is trivial. Most other types
of engineers are very concerned about the cost of each item in terms of parts
and labor to manufacture it. In other words, for tangible objects, the processes
following completion of design tend to be the expensive ones. Software, on the
other hand, can be duplicated at very little cost by downloading over a network
or creating a CD. Almost all the cost of software is therefore in its development,
not its manufacturing.

M The software industry is labor intensive. It has become possible to automate
many aspects of manufacturing and construction using machinery; therefore,
other branches of engineering have been able to produce increasing amounts of
product with less labor. However, it would require truly ‘intelligent’ machines
to fully automate software design or programming. Attempts to make steps in
this direction have so far met with little success.

M It is all too easy for an inadequately trained software developer to create a piece
of software that is difficult to understand and modify. A novice programmer
can create a complex system that performs some useful function but is highly
disorganized in terms of its design. In other areas of engineering, you can
create a poor design too, but the flaws will normally be easier to detect since
they will not be buried deep within thousands of pages of source code. For

Section .1 | 3
The nature of software

example, if a civil engineer designed an unsafe bridge, it would normally be
easy for inspectors to notice the flaws since they know exactly what to look for
in each drawing and calculation. A poorly designed software system will
usually at least partly work, but many other types of engineering artifact will
not work at all if they are badly designed.

M Software is physically easy to modify; however, because of its complexity it is
very difficult to make changes that are correct. People tend to make changes
without fully understanding the software. As a side effect of their
modifications, new bugs appear.

B Software does not wear out with use like other engineering artifacts, but instead
its design deteriorates as it is changed repeatedly. As mentioned in the previous
point, changes tend to introduce new defects; consequently the changed
software tends to be worse in terms of design than the original. Over time, the
designs of successive versions of software may show significant deterioration to
the point where a complete redesign is needed.

Taken together, the above characteristics mean that much existing software is of
relatively poor quality and is steadily becoming worse. At the same time, there
is strong demand for new and changed software, which customers expect to be
of high quality and to be produced rapidly. Therefore, software developers have
often not been able to live up to the expectations of their managers and
customers — many software projects are either never delivered, or are delivered
late and over budget. Furthermore, many software systems that are delivered are
never put to use because they have so many problems; others require major
modification before they can be used.

This whole situation has been called the software crisis, despite the fact that
the crisis has been going on for several decades. The term ‘crisis’ was chosen
with the hope that the problems which arose as the software industry expanded
would be resolved by implementing improved software engineering methods.
Although this sentiment still holds true, we now realize that the difficulties of
the software industry are, to some extent, a natural consequence of the complex
nature of software, coupled with the laws of economics and the vagaries of
human psychology.

It is an objective of this book to teach you how to engineer software so that it
meets expectations and doesn’t contribute to the crisis. To do that, you will have
to learn techniques that allow you to minimize or hide the complexity, and take
account of economic and psychological realities.

Types of software and their differences
There are many different types of software. One of the most important
distinctions is between custom software, generic software and embedded
software.
Custom software is developed to meet the specific needs of a particular
customer and tends to be of little use to others (although in some cases

4]

Chapter |

Software and software engineering

developing custom software might reveal a problem shared by several similar
organizations). Much custom software is developed in-house within the same
organization that uses it; in other cases, the development is contracted out to
consulting companies. Custom software is typically used by only a few people
and its success depends on meeting their needs.

Examples of custom software include web sites, air-traffic control systems and
software for managing the specialized finances of large organizations.

Generic software, on the other hand, is designed to be sold on the open
market, to perform functions that many people need, and to run on general-
purpose computers. Requirements are determined largely by market research.
There is a tendency in the business world to attempt to use generic software
instead of custom software because it can be far cheaper and more reliable. The
main difficulty is that it might not fully meet the organization’s specific needs.
Generic software is often called Commercial Off-The-Shelf software (COTS),
and it is sometimes also called shrink-wrapped software since it is commonly
sold in packages wrapped in plastic. Generic software producers hope that they
will sell many copies, but their success is at the mercy of market forces.

Examples of generic software include word processors, spreadsheets,
compilers, web browsers, operating systems, computer games and accounting
packages for small businesses.

Embedded software runs specific hardware devices which are typically sold
on the open market. Such devices include washing machines, DVD players,
microwave ovens and automobiles. Unlike generic software, users cannot
usually replace embedded software or upgrade it without also replacing the
hardware. The open-market nature of the hardware devices means that
developing embedded software has similarities to developing generic software;
however, we place it in a different category due to the distinct processes used to
develop it.

Since embedded systems are finding their way into a vast number of
consumer and commercial products, they now account for the bulk of software
copies in existence. Generic systems, on the other hand, account for most of the
software running today on general-purpose computers. Although custom
software has fewer copies than either of the other types, it accounts for many
more distinct systems and hence is what most developers work on.

It is possible to take generic software and customize it. The risk in doing this,
however, is that when a new release of the generic software is issued, the
customization work may have to be re-done.

Table 1.1 Differences among custom, generic and embedded software
Custom Generic Embedded
Number of copies in use Low Medium High
Total processing power devoted to running this type of Low High Medium
software

Worldwide annual development effort High Medium Medium

Section .1 |5
The nature of software

You can also take custom software and try to make it generic; however, this
can be a complex process if the software was not designed in a flexible way.

Table 1.1 summarizes some of the important characteristics of custom,
generic and embedded software.

Another important way to categorize software in general is whether it is real-
time or data processing software. The most distinctive feature of real-time
software is that it has to react immediately (i.e. in real time) to stimuli from the
environment (e.g. the pushing of buttons by the user, or a signal from a sensor).
Much design effort goes into ensuring that this responsiveness is always
guaranteed. Much real-time software is used to operate special-purpose
hardware; in fact almost all embedded systems operate in real time. Many
aspects of the custom systems that run industrial plants and telephone
networks are also real-time.

Generic applications, such as spreadsheets and computer games, have some
real-time characteristics, since they must be responsive to their users’ inputs.
However, these tend to be soft real-time characteristics: when timing
constraints are not met, such systems merely become sluggish to use. In
contrast, most embedded systems have hard real-time constraints, and will fail
completely if these are not met. Safety is thus a key concern in the design of
such systems.

Data processing software is used to run businesses. It performs functions
such as recording sales, managing accounts, printing bills etc. The biggest
design issues are how to organize the data and provide useful information to
the users so they can perform their work effectively. Accuracy and security of
the data are important concerns, as is the privacy of the information gathered

about people. A key characteristic of traditional

Usage of the word ‘software’ - a data processing tasks is that rather than

common mistake made by non-native processing data the moment it is available, it is
speakers of English instead gathered together in batches to be

Many non-native speakers of English processed at a later time.
4 P 3 Some software has both real-time and data
erroneously say sentences such as the

rocessing aspects. For example, a telephone
following: ‘I will create a sofiware to update P § a5p pe PY
, ; system has to manage phone calls in real time,
the database’. The error is that you cannot but billing for those calls is a data processin
talk about ‘a software’. When the word & P &

. .. activity.
‘software’ is used as a houn, it is 2 mass noun, Y

_ N Software varies in terms of its age. Much
like ‘water’ and ‘sand’,and cannot be preceded . .

- ; o, custom software written in the 1960s and
by the indefinite article ‘@’. Therefore you

o 1970s is still in use today. That software differs
have to say, ‘| will create some sofiware to

y o) from newly developed software in terms of
update the database’,or ‘| will create a piece of ;
, programming languages, data storage technol-
software to update the database’. You can also . . .
L .o ogies, user interface technology and design
use the word software as an adjective, as in | . .
. techniques. Many of the web-based user inter-
will create a software system to update the) .
, L) 3 faces we use today, e.g. for banking, are just
database’. In this latter case the indefinite

o . . ,) , new front ends on much older custom data
article is referring to ‘system’, not ‘software’. .
processing software.

|

Chapter |

Software and software engineering

Exercise

El

Classify the following software according to whether it is likely to be custom,
generic or embedded (or some combination); and whether it is data processing or
real-time.

(a) A system to control the reaction rate in a nuclear reactor.

(b) A program that runs inside badges worn by nuclear plant workers that
monitors radiation exposure.

(c) A program used by administrative assistants at the nuclear plant to write
letters.

(d) A system that logs all activities of the reactor and its employees so that
investigators can later uncover the cause of any accident.

(e) A program used to generate annual summaries of the radiation exposure
experienced by workers.

(f) An educational web site containing a Flash animation describing how the
nuclear plant works.

|.2 What is software engineering!

Definition:

Not all software development should be called software engineering, in the same
way as not all construction is civil engineering. A do-it-yourselfer can build a
wooden footbridge spanning a 60-cm-wide stream in his or her garden, but it
requires a civil engineer to build a bridge across a wider span that public vehicles
will traverse. Similarly, a self-trained shareware author may write a small
program to track a personal stock portfolio, but it requires a software engineer
to develop a complete trading and accounting system for a large brokerage
company.

software engineering is the process of solving customers’ problems by the
systematic development and evolution of large, high-quality software systems
within cost, time and other constraints.

Each of the words in this definition has been chosen carefully. Let us therefore
split up the definition and examine each component.

Solving customers’ problems

Solving customers’ problems should be the goal of every software engineering
project. Before finalizing any software engineering decision, you should
therefore ask yourself whether the proposed alternative will help achieve this
goal. In particular, it is important to recognize activities that are not consistent

Section 1.2 | 7
What is software engineering?

with this goal, such as adding unnecessary features. Software engineers have
the responsibility to recognize situations when it would be most cost effective
not to develop software at all, to develop simpler software or to purchase
existing software.

The problems being solved by software engineers are usually related to
human activities. Software engineers must therefore learn to communicate
and negotiate effectively with people, to understand how people do their
work, and to understand what impact any proposed software may have on its
users’ productivity.

Systematic development and evolution

Software development becomes an engineering process when the developers
apply well-understood techniques in an organized and disciplined way.
Software engineering is a young field, and its technology and techniques are
still undergoing rapid development. Nevertheless, there are many well-
accepted practices that have been formally standardized by bodies such as the
IEEE, ISO (International Organization for Standardization) and various
national standards bodies.

Sometimes a software engineering team sets out to develop completely new
software. However, most development work involves modifying software that
has been already written — this is because software is normally continually
changed over a period of years until it becomes obsolete. Ensuring that this
constant change, called maintenance or evolution, is done in a systematic way
is an integral part of software engineering. We will discuss this in more detail
in Section 1.6 below.

Large, high-quality software systems

A small system can often be successfully developed by a programmer working
alone. However, large systems with many functions and components become
too complex unless engineering discipline is applied. A system of many
thousands of lines of code cannot be completely understood by one person,
and certainly would take one person far too long to develop, therefore
teamwork is essential to software engineering. One of the hardest challenges
is dividing up the work and ensuring that the teams communicate effectively
and produce subsystems that properly connect with each other to produce a
large but functioning system.

The techniques discussed in this book are therefore essential for large
systems, although many of them are also useful for small systems.

The end product that is produced must be of sufficient quality. Some
software engineering techniques are aimed at increasing the quality of the
design, whereas others are used to verify that sufficient quality is present
before the software is released. Quality is discussed in more detail in
Section 1.5 and Chapter 10.

8|

1.3

Chapter |

Software and software engineering

Cost, time and other constraints

One of the essential characteristics of engineering is that you have to consider
economic constraints as you try to solve each problem. The main economic
constraints are: 1) resources are finite, 2) it is not worth doing something unless
the benefit gained from it outweighs its cost, and 3) if somebody else can
perform some particular task more cheaply or faster than us, they will probably
succeed instead of us. Software engineers, like other engineers, therefore must
ensure their systems can be produced within a limited budget and by a certain

due date. Achieving this requires careful planning

Other definitions of software and sticking to the plan in a disciplined way.

engineering

Furthermore, creating a realistic plan in the first

We have presented our definition of software place ‘require.s a great deal of knowledge about
engineering. Here are two other definitions: what is requ1.re.d to produce a system, and how
W IEEE: (1) The application of a systematic, ~10ng each activity should take.

disciplined, quantifiable approach to the
development, operation, maintenance budgets has

Unfortunately, failure to stick to cost and time
been widespread in software

of software; that is, the application of ~engineering projects. The reasons for this are many;,
engineering to software. (2) The study but include the inherent complexity of software, the

of approaches as in ().

relative immaturity of software engineering and its

B The Canadian Standards Association: technologies, lack of knowledge and experience on

The systematic activities involved in

the part of software engineers, the inherent human

the design, implementation and testing tendency towards over-confidence, and pressure to
of software to optimize its production offer excessively low prices and short development

and support.

times in order to obtain contracts or make sales.

Software engineering as a branch of the engineering profession

People have talked about software engineering since 1968 when the term was
coined at a NATO conference. However, only since the mid-1990s has there
been a shift towards recognizing software engineering as a distinct branch of the
engineering profession. Some parts of the world, notably Europe and Australia,
were somewhat ahead of others in this regard.

In most countries, in order to legally perform consulting or self-employed
work where you call yourself an ‘engineer, you must be licensed. Similarly, a
company that sells engineering services may be required to employ licensed
engineers who take formal responsibility for projects, ensuring they are
conducted following accepted engineering practices.

Prior to the 1940s, very few jurisdictions required engineers to be licensed.
However, various disasters caused by the failure of designs eventually
convinced almost all governments to establish licensing requirements.
Licensing agencies have the responsibility to ensure that anyone who calls
himself or herself an engineer has sufficient engineering education and
experience. To exercise this responsibility, the agencies accredit educational
institutions they believe are providing a proper engineering education, and

Section 1.3 | 9
Software engineering as a branch of the engineering profession

Ethics in Software Engineering

It is very important as a software engineer-in-training that you develop a sense of professional ethics.
Many people perform software development work without fully realizing some of the ethical issues
that can arise. The following are highlights of the IEEE/ACM code of ethics. For details about the IEEE
and the ACM, see the ‘For More Information’ section at the end of the chapter.

Software engineers shall:

Act consistently with the public interest.

Act in the best interests of their client or employer; as long as this is consistent with the public
interest.

Develop and maintain their product to the highest standards possible.

Maintain integrity and independence when making professional judgments.

Promote an ethical approach in management.

Advance the integrity and reputation of the profession, as long as doing so is consistent with the
public interest.

Be fair and supportive to colleagues.

Participate in lifelong learning.

scrutinize the background of those who are applying to be engineers, often
requiring them to write exams.

We can characterize the work of engineers as follows: engineers design
artifacts following well-accepted practices, which normally involve the
application of science, mathematics and economics. Since engineering has
become a licensed profession, adherence to codes of ethics and taking personal
responsibility for work have also become essential characteristics. Some people
only include in engineering those design activities that have a potential to
impact public safety and well-being; however, since most people who are trained
as engineers do not in fact work on such critical projects, most people define
engineering in the broader sense.

Historically, engineering has evolved several specialties, most notably civil,
mechanical, electrical and chemical engineering. Computer engineering evolved
in the 1980s to focus on the design of computer systems that involve both
hardware and software components. However, most of the practitioners
performing what we have defined above to be software engineering have not
historically been formally educated as engineers.

Many of the earliest programmers were mathematicians or physicists;
then in the 1970s the discipline of computer science developed, and educated
many of the current generation of software developers. The computer
science community recognized the need for a disciplined approach to the
creation of large software systems, and developed the software engineering
discipline.

In the mid-1990s the first jurisdictions started to recognize software
engineering as a distinct branch of engineering. For example, in the United
Kingdom those who study software engineering in computer science departments

10|

Chapter |

Software and software engineering

at universities have been able to achieve the status of Chartered Engineer, after a
standard period of work experience and passing certain exams. In North America,
the State of Texas and the Province of Ontario were among the first jurisdictions
to license software engineers (in 1998 and 1999 respectively).

In parallel with the process of licensing software engineers, universities have
been establishing academic programs in universities that focus on software
engineering, and are clearly distinct from either computer science or computer
engineering. Since considerable numbers of these graduates are now entering
the workforce, software engineering has become firmly established as a branch
of engineering.

|4 Stakeholders in software engineering

Many people are involved in a software engineering project and expect to
benefit from its success. We will classify these stakeholders into four major
categories, or roles, each having different motivations, and seeing the software
engineering process somewhat differently.

Users. These are the people who will use the software. Their goals usually
include doing enjoyable or interesting work, and gaining recognition for the
work they have done. Often they will welcome new or improved software,
although some might fear it could jeopardize their jobs. Users appreciate
software that is easy to learn and use, makes their life easier, helps them achieve
more, or allows them to have fun.

Customers (also known as clients). These are the people who make the
decisions about ordering and paying for the software. They may or may not be
users — the users may work for them. Their goal is either to increase profits or
simply to run their business more effectively. Customers appreciate software
that helps their organization save or make money, typically by improving the
productivity of the users and the organization as a whole. If you are developing
custom software, then you know who your customers are; if you are developing
generic software, then you often only have potential customers in mind.

Software developers. These are the people who develop and maintain the
software, many of whom may be called software engineers. Within the
development team there are often specialized roles, including requirements
specialists, database specialists, technical writers, configuration management
specialists, etc. Development team members normally desire rewarding
careers, although some are more motivated by the challenge of solving difficult
problems or by being a well-respected ‘guru’ in a certain area of expertise.
Many developers are motivated by the recognition they receive by doing high-
quality work.

Development managers. These are the people who run the organization that is
developing the software; they often have an educational background in

Section .5 | 11

Software quality

business administration. Their goal is to please the customer or sell the most
software, while spending the least money. It is important that they have
considerable knowledge about how to manage software projects, but they may
not be as intimately familiar with small details of the project as are some of the
software developers. For this reason, it is important that software developers
keep their managers informed of any problems.

In some cases, two, three or even all four of these stakeholder roles may be held
by the same person. In the simplest case, if you were privately developing
software for your own use, then you would have all four roles.

Exercise

E2 How do you think each of the four types of stakeholders described above would
react in each of the following situations?

(a) You study a proposal for a new system that will completely automate the
work of one individual in the customer’s company. You discover that the
cost of developing the system would be far more than the cost of
continuing to do the work manually, so you recommend against
proceeding with the project.

(b) You implement a system according to the precise specifications of a
customer. However, when the software is put into use, the users find it does
not solve their problem.

1.5 Software quality

Almost everybody says they want software to be of ‘high quality’ But what does
the word ‘quality’ really mean? There is no single answer to this question since,
like beauty, quality is largely in the eye of the beholder.

Figure 1.1 shows what quality means to each of the stakeholders. They each
consider the software to be of good quality if the outcome of its development
and maintenance helps them meet their personal objectives.

Attributes of software quality

The following are five of the most important attributes of software quality.
Software engineers try to balance the relative importance of these attributes so
as to design systems with the best overall quality, as limited by the money and
time available.

M Usability. The higher the usability of software, the easier it is for users to work
with it. There are several aspects of usability, including learnability for novices,
efficiency of use for experts, and handling of errors. We will discuss more about
usability in Chapter 7.

12|

Chapter |

Software and software engineering

Figure 1.1

Customer: User:

solves problems at an acceptable easy to learn;

cost in terms of money paid and efficient to use;
resources used helps get work done

Quality software

Developer: Development manager:

easy to design; sells more and pleases customers
easy to maintain; while costing less to develop
easy to reuse its parts and maintain

What software quality means to different stakeholders

Efficiency. The more efficient software is, the less it uses of CPU-time,
memory, disk space, network bandwidth and other resources. This is important
to customers in order to reduce their costs of running the software, although
with today’s powerful computers, CPU-time, memory and disk usage are less of
a concern than in years gone by.

Reliability. Software is more reliable if it has fewer failures. Since software
engineers do not deliberately plan for their software to fail, reliability depends
on the number and type of mistakes they make. Designers can improve
reliability by ensuring the software is easy to implement and change, by testing
it thoroughly, and also by ensuring that if failures occur, the system can handle
them or can recover easily.

Maintainability. This is the ease with which you can change the software. The
more difficult it is to make a change, the lower the maintainability. Software
engineers can design highly maintainable software by anticipating future
changes and adding flexibility. Software that is more maintainable can result in
reduced costs for both developers and customers.

Reusability. A software component is reusable if it can be used in several
different systems with little or no modification. High reusability can reduce the
long-term costs faced by the development team. We will discuss reusable
technology in Chapter 3.

All of these attributes of quality are important. However, the relative importance
of each will vary from stakeholder to stakeholder and from system to system.
For example, reliability and efficiency are usually both of concern to customers
and users; however, in a safety-critical system for controlling a nuclear power
plant, reliability would be far more important than efficiency - assuming that
faster hardware could be bought if efficiency became a problem. On the other
hand, efficiency might be highly important in a program for biologists that
calculates how proteins fold - such a program might take days to run, but if it
fails no disaster will occur. The program can simply be corrected and re-run.

Section .5 | 13

Software quality

Often, software engineers improve one quality at the expense of another. In
other words, they have to consider various trade-offs. The following are some
examples of this:

M Improving efficiency may make a design less easy to understand. This can
reduce maintainability, which leads to defects that reduce reliability.

M Achieving high reliability often entails repeatedly checking for errors and
adding redundant computations; achieving high efficiency, in contrast, may
require removing such checks and redundancy.

M Improving usability may require adding extra code to provide feedback to the
users, which might in turn reduce overall efficiency and maintainability.

One of the characteristics that distinguishes good engineering practice is setting
objectives for quality when starting a project, and then designing the system to
meet these objectives. The objectives are set in such a way that if they are met,
all the stakeholders will be happy. Also, since there is no need to exceed the
objectives, they help engineers to avoid spending more effort than is necessary.

To compete in the market successfully, it is sometimes necessary to optimize
certain aspects of designs. This means achieving the best possible levels of
certain qualities, while not exceeding a certain budget and at the same time
meeting objectives for the other qualities.

Exercise

E3 For each of the following systems, which attributes of quality do you think
would be the most important and the least important?

(a) A web-based banking system, enabling the user to do all aspects of banking
on-line.

(b) An air traffic control system.

(c) A program that will enable users to view digital images or movies stored in
all known formats.

(d) A system to manage the work schedule of nurses that respects all the
constraints and regulations in force at a particular hospital.

(e) An application that allows you to purchase any item seen while watching TV.

Internal quality criteria

Above, we have largely been talking about external quality attributes that can be
observed by the stakeholders and have a direct impact on them. There are also
many internal quality criteria that characterize aspects of the design of software

14|

Chapter |

Software and software engineering

and have an effect on the external quality attributes. The following are a couple
of examples:

The amount of commenting of the code. This can be measured as the fraction
of total lines in the source code that are comments. This impacts
maintainability, and indirectly it impacts reliability.

The complexity of the code measured in terms of the nesting depth, the
number of branches and the use of certain complex programming constructs.
This directly impacts maintainability and reliability.

In Sections 2.10 and 9.2, when we talk about design, we will discuss additional
internal quality criteria that affect the externally visible qualities.

Quality for the short term vs. quality for the long term

It is human nature to worry more about short-term needs and ignore the longer-
term consequences of decisions. This can have severe consequences. Examples
of short-term quality concerns are: Does the software meet the customer’s
immediate needs? Is it sufficiently efficient for the volume of data we have
today?

These questions are important, and must be answered. However, if you take
an exclusively short-term focus you are likely to ignore maintainability, and also
to ignore the longer-term needs of the customers. This is a mistake made by
numerous software engineers over the years, resulting in much higher costs later
on. Unfortunately, at the height of excitement about new projects with
impending deadlines and markets to capture, even seasoned developers fall into
the same trap.

|.6 Software engineering projects

Software engineering work is normally organized into projects. For a small
software system, there may only be a single team of three or four developers
working on the project. For a larger system, the work is usually subdivided into
many smaller projects.

We can divide software projects into three major categories: 1) those that
involve modifying an existing system; 2) those that involve starting to develop a
system from scratch, and 3) those that involve building most of a new system
from existing components, while developing new software only for missing
details.

Evolutionary projects

Most software projects are of the first type - modifying an existing system. The
term maintenance is often used to describe this process; however, for many
people the word maintenance implies keeping something running by simply
fixing problems, but without adding significant new features. The reality of

Section I.6| 15

Software engineering projects

software change is somewhat different: there tends to be constant pressure from
users and customers not only to fix problems but also to make many other kinds
of changes. After several years of such changes, software systems are often
significantly larger and barely resemble their original state. We will thus use the
term evolution to more accurately describe what happens to software over its
life-span.

Evolutionary or maintenance projects can be of several different types:

M Corrective projects involve fixing defects.

M Adaptive projects involve changing the system in response to changes in the
environment in which the software runs. For example, it might be necessary to
make changes so that the system will continue to work with a new version of
the operating system or database, or with a new set of tax laws.

B Enhancement projects involve adding new features for the users.

B Re-engineering or perfective projects involve changing the system internally so
that it is more maintainable, without making significant changes that the user
will notice.

In reality, most evolutionary projects involve more than one of the above.

In many cases, a software engineering team must undertake evolution of a
system when the original developers are no longer available, or when their
memory of the design is starting to fade. Such a system is called a legacy system.

A team can take great pride in evolving a high-quality product such that it
continues to meet the needs of customers. However, it is important to ensure
that the product does not become a ‘victim of its own success. This occurs
when customers constantly want new features added, so the software becomes
so large and bloated that it becomes difficult to maintain at a high level of
quality.

Greenfield projects

Projects to develop an entirely new software system from scratch are
significantly less common than evolutionary projects. Developers often enjoy
such brand new, or greenfield, projects because they have a wider freedom to be
creative about the design.

In a greenfield project you are not constrained by the design decisions and
errors made by predecessors. However, it takes a lot of work to build a complex
system from scratch.

Projects that involve building on a framework or a set of existing components

The third type of software project can be considered neither evolutionary
nor new development. This type of project, which is becoming increasingly
common, starts with a framework, or involves plugging together several
components that are already developed and provide significant functionality.

16|

Chapter |

Software and software engineering

A framework is a software system especially designed to be reused in different
projects, or in the various products of a product line. A framework contains
important functionality, but must be adapted to handle the requirements of
particular customers or products.

For example, imagine an application framework for ticketing. Such a system
would have basic capabilities for reserving and printing tickets for events or
travel. These functions would be well designed and tested by the original
developers of the framework. However, many details would need to be added to
handle the particular needs of each new organization that adopts the
framework. Selling tickets for a theater can be quite different from selling tickets
for a sporting event, a tropical holiday package or even a cinema.

As an example of the use of components, imagine you had an accounting
package and a package for tracking meetings, appointments etc. You might hook
these together to create a product for a lawyer’s office. The meetings and
appointments would automatically result in charges for time being recorded in
the accounting package. The code that you write to connect the two component
packages is called glue.

The use of frameworks or components allows you to benefit from reusing
software that has been shown to be reliable. Yet, at the same time, it gives you
much of the freedom to innovate that you would have if you were performing
greenfield development.

In Chapter 3 we will discuss frameworks in detail. We will also present a
framework that you will use in exercises and projects throughout this book.

|.7 Activities common to software projects

The following subsections briefly describe many of the activities commonly
found in software engineering projects. We will discuss most of these in more
detail later in the book.

Requirements and specification

In order to solve the customer’s problems, you must first understand the

problems, the customer’s business environment, and the available technology

which can be used to solve the problems. Once you have done this, you can meet

with the customers and users to decide on a course of action that will solve the

problems. If you decide that developing or modifying software is the best course

of action, then you can decide in detail what facilities the software should provide.
This overall process may include the following activities.

Domain analysis: understanding the background needed so as to be able to
understand the problem and make intelligent decisions.

Defining the problem: narrowing down the scope of the system by
determining the precise problem that needs solving.

Section 1.7 | 17

Activities common to software projects

B Requirements gathering: obtaining all the ideas people have about what the
software should do.

B Requirements analysis: organizing the information that has been gathered,
and making decisions about what in fact the software should do. The term
‘requirements analysis’ is often used more broadly to include some of the other
steps in this list.

B Requirements specification: writing a precise set of instructions that define
what the software should do. These instructions should describe how the
software behaves from the perspective of the user, but should not describe any
details of the implementation.

One of the most important principles of requirements is to separate the ‘what’
from the ‘how’. The ‘what’ refers to the requirements — what is needed to solve
the problem. The ‘how’ refers to how the solution will be designed and
implemented.

Although initial requirements should be established early in a project, the
customers’ needs tend to change. Requirements analysis therefore should be
continued throughout the life of a software system. We will discuss
requirements in detail in Chapter 4.

Design
Design is the process of deciding how the requirements should be implemented
using the available technology. Important activities during design include:

M Deciding what requirements should be implemented in hardware and what in
software. This is called systems engineering and is normally only necessary for
embedded and other real-time systems. Even for these systems, there is a trend
towards implementing more and more facilities in software so that the
hardware can be simpler and more generic.

M Deciding how the software is to be divided into subsystems and how the
subsystems are to interact. This process is often called software architecture;
there are several well-known ways of structuring software which are called
architectural patterns or styles. In Chapter 3 we will introduce the client-server
architecture, and in Chapter 9 we will look at other architectural patterns.

M Deciding how to construct the details of each subsystem. Such details include
the data structures, classes, algorithms and procedures. This process is often
called detailed design.

M Deciding in detail how the user is to interact with the system, and the look and
feel of the system. This is called user interface design, and will be discussed in
Chapter 7.

B Deciding how the data will be stored on disk in databases or files. We do not
discuss this topic in this book - it is addressed in many specialized books.

18|

Chapter |
Software and software engineering

Agile versus conventional development
There is a community of software engineers who practice what is called agile development. Agile
methods emphasize the ability to quickly modify software and have been found to work well for small
to medium-sized systems. The most well-known such method is called eXtreme Programming (XP).
We will contrast agile methods with more conventional methods at several places in this book.
One way in which agile and conventional methods differ is in how they treat requirements
and design. Agile practitioners gather requirements in very small increments, and design and
implement each increment before gathering the next small requirements increment. They
fully acknowledge that this may require the design to be changed to accommodate the new
requirements, and use techniques called refactoring to make the necessary design changes.
Conventional practitioners, on the other hand, prefer to develop a design that will be robust

in the face of changing requirements. We will revisit all these ideas at various points in the
book.

Quite often, for large systems, software engineers work on architectural design
in conjunction with high-level requirements. This allows them to divide a
system effectively into subsystems. Detailed requirements can then be
developed for each subsystem. For smaller systems and lower-level subsystems
though, it is conventional to develop the requirements before starting the design
since otherwise the design may have to be re-done if requirements change.

Modeling

Modeling is the process of creating a representation of the domain or the
software. Various modeling approaches can be used during both requirements
analysis and design. These include:

B Use case modeling. This involves representing the sequences of actions
performed by the users of the software. We will discuss this in Chapter 4.

M Structural modeling. This involves representing such things as the classes and
objects present in the domain or in the software. This is the topic of Chapters 5
and 6.

B Dynamic and behavioral modeling. This involves representing such things as
the states that the system can be in, the activities it can perform, and how its
components interact. This is the topic of Chapter 8.

Modeling can be performed visually, using diagrams, or else using semi-formal
or formal languages that express the information systematically or
mathematically. In this book, we will primarily use semi-formal notations and
diagrams - in particular a visual language called UML.

Programming

Programming is an integral part of software engineering. It involves the
translation of higher-level designs into particular programming languages. It

Section 1.7 | 19

Activities common to software projects

should be thought of as the final stage
of design because it involves making
decisions about the appropriate use of
programming language constructs,
variable declarations etc. Most people
who call themselves programmers also
perform many higher-level design
activities. People who limit their work
to programming (i.e. who do no
higher-level design or analysis) are
often today called ‘coders.

One of the objectives of software engineering researchers has been to
automate programming. There has been some success in this regard - some
tools now generate much of the code for you from models typically represented
in UML. However, there will always be a need for some programming done by
humans.

We assume that readers of this book have some object-oriented program-
ming background. We will use Java for the example code in this book, and you
will be asked to translate designs into programs so you can get a feel for the
effects of various design decisions. If you know an object-oriented language
other than Java (e.g. C++, C# or Smalltalk) it should not be difficult to learn
enough Java to use the book effectively.

Pair programming

One of the recommended approaches in the agile method
‘eXtreme Programming’ is called pair programming. In this
technique, two programmers always work together in
front of a single computer. The idea is that their constant
interaction should stimulate good ideas and prevent
errors. VWhether this approach should be widely adopted
is still being studied and debated.

Quality assurance
Quality assurance (QA) encompasses all the processes needed to ensure that the
quality objectives discussed in Section 1.5 are met. Quality assurance occurs
throughout a project, and includes many activities, including the following:

B Reviews and inspections. These are formal meetings organized to discuss
requirements, designs or code to see if they are satisfactory.

M Testing. This is the process of systematically executing the software to see if it
behaves as expected.

Quality assurance is also often divided into validation, which is the process of
determining whether the requirements will solve the customer’s problem, and
verification, which is the process of making sure the requirements have been
adhered to.

In various chapters, we present checklists that you can use to conduct reviews.
Testing and some other aspects of quality assurance are presented in detail in
Chapter 10.

Deployment
Deployment involves distributing and installing the software and any other
components of the system such as databases, special hardware etc. It also
involves managing the transition from any previous system.

20| Chapter |

Software and software engineering

Deploying a new release of a large system with many users can pose great
difficulties - the amount of work is often under-estimated. To keep this book
short, we have decided not to discuss deployment.

Managing software configurations
Configuration management involves identifying all the components that
compose a software system, including files containing requirements, designs
and source code. It also involves keeping track of these as they change, and
ensuring that changes are performed in an organized way. All software
engineers must participate in the configuration management of the parts of the
system for which they are responsible.

Managing the process
Managing software projects is considered an integral part of software
engineering. All software engineers assist their managers to some extent, and
most will, at some point in their careers, become managers themselves.
Management issues are discussed briefly in Chapter 11. In addition to leading
the other activities described above, the manager has to undertake the following
tasks:

M Estimating the cost of the system. This involves studying the requirements
and determining how much effort they will take to design and implement.

B Planning. This is the process of allocating work to particular developers, and
setting a schedule with deadlines.

Both cost estimates and plans need to be examined and revised on a regular
basis, since initial estimates will only be rough.

|.8 The themes emphasized in this book

The nine general themes discussed below are emphasized through many of the
chapters in this book. They represent general principles or unifying approaches
that can be used in any software project.

Theme |:understanding the customer and user
Interaction with customers and users should occur in virtually all of the
software engineering activities discussed in the previous section. These two
groups of stakeholders are most heavily involved in requirements analysis, user
interface design and deployment, but also may play a role in design, quality
assurance and project management.

If software engineers can learn how users and customers think and behave,
then it will be easier to produce software that meets their needs. Ensuring that
they feel involved in the software engineering process will result in fewer
mistakes being made and greater acceptance of the finished product.

Section .8 | 21

The themes emphasized in this book

Theme 2: basing development on solid principles and reusable technology

A fundamental tenet of engineering is that once techniques or technology
become well established, their use should become routine. Civil engineers, for
example, have a well-established set of principles, which they use to decide what
kind of bridge to build. They also have standard bridge designs that they adapt
for most routine bridge projects.

Even though software engineering is still a maturing discipline, many
principles have become well established. We discuss these principles throughout
the book.

As for technology, we base our designs on Java, a language with wide
acceptance. Furthermore, in Chapter 3 we present a framework — a collection of
classes that forms the basic structure upon which many different applications
can be built. We demonstrate how this framework can be used to rapidly build
several different applications.

Applying well-understood principles and reusing designs means that we are
building on the experience and work of others, rather than ‘reinventing the
wheel The creative task of the engineer is to put knowledge to use in innovative
ways to solve problems. This contrasts with the role of the scientist, which is to
seek out new knowledge.

Theme 3: object orientation

Object-oriented (OO) techniques are based on the use of classes that act as
abstractions of data, and that contain a set of procedures which act on that data.
It is now widely recognized that object orientation is an effective design
approach to manage the complexity inherent in most large systems.

In this book we discuss three major areas of software engineering in an object-
oriented context: analysis, design and programming. In Chapter 2, we review
basic OO principles and OO programming; then, in the rest of the book, we
approach analysis and design from a primarily OO perspective. We will ask you
to implement your designs in the OO language Java, so that you can see the
consequences of your design decisions.

Theme 4: visual modeling using UML

The Unified Modeling Language (UML) is a set of notations for representing
software requirements and design. It is now widely accepted as the standard
approach to representing many aspects of software.

We will teach you in some detail how to use several different aspects of UML,
including class diagrams (Chapter 5), state diagrams and interaction diagrams
(both in Chapter 8).

Theme 5: evaluation of alternatives in requirements and design

There is rarely a single straightforward answer to any problem in software
engineering. Whether you are developing requirements or performing design,

22|

Chapter |

Software and software engineering

there are often several alternatives that must be assessed systematically to
decide which is best.

In both requirements analysis and design we will encourage you to list
alternatives, and discuss their advantages and disadvantages before making a
decision. We will also encourage you to document your reasoning, frequently
called rationale, so that others can understand your decisions.

Theme 6:incorporating quantitative and logical thinking

It is becoming increasingly necessary to incorporate mathematical thinking into
software development. We will present basic ways to measure aspects of
software systems and software engineering processes. The objective of doing
this measurement is to help make predictions of development time and quality
in order to better control these factors. This topic, commonly known as software
metrics, is covered in the chapters on object-orientation (Chapter 2),
requirements (Chapter 4), design (Chapter 9), testing (Chapter 10) and project
management (Chapter 11).

We will also show several ways to make use of logic in order to develop software:
in Chapter 5 we will introduce OCL, a language for formally describing properties
of designs; and in Chapter 9 we will show how logic can be used in a technique
called defensive programming.

Theme 7:iterative and agile development

Traditionally, software engineering has been performed following what is called
the waterfall model. In this approach you first develop requirements; once these
are complete you move on to design, and then to programming, testing and
deployment. An outdated view held that you should completely finish each of
these steps before moving on to the next; then, when you complete deployment,
you are finished. In contrast, the currently accepted view is that software
engineering is, and should be, a highly iterative process. So-called agile
techniques are the most highly iterative of all (see the sidebar ‘Agile versus
conventional development’ earlier in this chapter).

It is typical to develop the first iteration of a system as a prototype, with only
rough requirements and little functionality. Doing this serves to help establish
the requirements for the next iteration. Several iterations of prototypes may be
needed before the stakeholders are finally satisfied with the requirements, at
which time you can proceed with a more rigorous process involving more
complete specification and design.

Even after delivering software to customers, you typically continue to build a
series of new releases, each one involving most of the activities discussed in
Section 1.6. Iterative development results in delivering smaller units of work
(prototypes or releases) quite frequently. This means that the first release can be
in the customers’ hands earlier than if you had tried to develop a fully fledged
system. It also means that if the system turns out to be a disaster, less work has
been wasted.

Section .8 | 23

The themes emphasized in this book

We will practice the iterative approach in this book, starting in Chapter 3, by
asking you to make a series of small changes to a project. You will do the
requirements, design and implementation of each change, with changes
becoming more sophisticated as you learn more of the material in the book.

We discuss processes the waterfall, iterative and other approaches in more
detail in Chapter 11.

Theme 8: communicating effectively using documentation
Software engineers communicate with each other orally both in meetings and at
each other’s desks; however, it would never be possible to run a large project if
all information had to be conveyed in this manner.

Writing clear documentation is therefore an
Agile documentation essential skill. Documentation should be written at
Agile developers prefer to write very little all stages of development and includes requirements,
documentation. Some would prefer that designs, user manuals, instructions for testers and
anything that needs documenting be put in project plans. One of the keys to writing good
code comments and nowhere else. documentation is to understand the audience. You
must provide the information the readers will need,
and organize it in such a way that the readers can find it easily. For example, the
audience for design documentation includes other software engineers with whom
you are currently working, as well as those who will need to make changes later. Both

groups need to understand what you did and why you did it.

Unfortunately, unless it is managed appropriately, writing documentation can
waste resources and can be a source of rigidity in software development. The
waste of resources can occur if documentation is never read - this will be the
case if it is excessively voluminous, poorly written or not made readily available.
Excessive documentation means that the readers cannot find what they want
easily, and ‘can’t find the forest for the trees. It is therefore as bad as if you had
not created enough documentation to start with.

Forcing software developers to write documents prematurely just to meet
specific deadlines can mean that the overall objective becomes writing
documents, instead of solving problems. Furthermore, such documents can
entrench poorly made decisions that are hard to change.

In this book, we will encourage you to write documentation but we will
emphasize that it should be as short and succinct as possible, and it should serve
the purpose of documenting your decisions and communicating them to others.
Furthermore, documentation should be written in the context of risk
management, discussed below, which means that it is always subject to change.

We will give you outlines of each type of document as well as several example
documents. You will have the opportunity to practice writing the documents
and also reviewing them in groups.

When writing documentation you should also be aware that there are often
standards that you should adhere to. It is important that documentation used
within a company have a standard format so that people can more easily use it.

24|

Chapter |

Software and software engineering

Theme 9: risk management in all software engineering activities

Whereas documentation allows future readers to keep an eye on the past, we
must also constantly keep an eye on the future. Risk analysis is a key software
engineering activity in which we constantly assess any new information to
determine whether it will cause problems for the project. If you believe there is
asignificant risk that a certain type of problem will arise, then you can take steps
to reduce the risk.

Software is an investment that should provide benefits; and risks are natural
in any investment. The objective must be to reduce risks to acceptable levels,
while still achieving the benefits. Taking action to reduce risks is like adjusting
your investment portfolio. Sometimes you put more effort into certain tasks to
ensure the project is completed successfully; at other times you must cut parts
of the system to avoid losses.

The last numbered section of every chapter will discuss the difficulties and
risks to be considered in the material covered by that chapter. In the next section
we begin this process by reviewing the most important risks in software
engineering.

1.9 Difficulties and risks in software engineering as a whole

The following is a selection of general factors, or challenges, that can have a
major impact on the success of a software engineering project. Software
engineers should regularly analyze whether any of these poses a risk, and take
the suggested corrective action if necessary.

Some of these points serve as a review of what we said earlier in this chapter.
We will discuss many of them in more detail in subsequent chapters.

After each challenge listed below, we list some suggestions for resolution.
These suggestions can be used both to reduce risk and solve problems. However,
since each situation is different, the suggestions will not always work -
experience and good judgment must be your ultimate guide. As you read
through the rest of the book, you will learn more details about how to go about
resolving the difficulties.

Complexity and large numbers of details. Software systems tend to become
complex because: a) it is easy to add new features, b) software developers
typically add features without fully understanding a system, and c) the system
may not have been originally designed to accommodate the features.
Resolution. Design the system for flexibility right from the start. Divide the system
into smaller subsystems, so that each one is naturally simpler. Resist the urge to
add new features, and consider removing those that are not needed. Use tools
designed to help you more fully understand the structure of a software system.
Budget sufficient time to learn about the software before making changes. When
faced with an over-complex system, redesign parts of it as necessary.

Section .9 | 25

Difficulties and risks in software engineering as a whole

B Uncertainty about technology. You can never be sure whether the technology
on which a system depends will work as expected. Hardware tends to be
reliable, but special-purpose hardware or future versions of the hardware may
differ from what you expect. Software libraries and other software systems with
which a system interacts can be expected to have bugs and incompatibilities.
Resolution. Avoid technology sold by just a single vendor and which has relatively
few other customers. Widely used technology is more likely to be supported and to
have had its defects removed. Avoid obscure features of any technology. Balance
the benefits of your use of third-party technology with the risks of problems.
Create prototypes to try out the technology you will be using.

B Uncertainty about requirements. Until a system is delivered and in use, you
can never be quite sure whether it meets the customer’s needs.
Resolution. Understand the application domain so you can communicate
effectively with clients and users. Follow a good requirements gathering and
analysis process. Prototype to get an early view of potential problems. Continually
interact with users and clients to keep up to date on their needs. Design with
change in mind.

B Uncertainty about software engineering skills. Software engineering is

heavily labor-intensive; however, skills of team members can vary
dramatically and probably are the biggest single factor affecting success of a
project.
Resolution. Make sure software engineers have sufficient general education,
plus training in the technology to be used. Make sure they have sufficient
experience by ‘practicing’ on prototypes or systems that are of lesser importance.
Put in place a mentoring system so that the software engineers can effectively
learn from others.

B Constant change. Both technology and requirements can be expected to
change regularly.
Resolution. Design for flexibility to accommodate potential changes. Stay aware of
things that may change. Adjust the requirements or design as soon as important
changes are discovered. Avoid changing too much too frequently, however.

B Deterioration of software design. Software deteriorates due to successive
changes that introduce bugs.
Resolution. Build flexibility and other aspects of maintainability into the software
from the start so that changes are easier to make. Ensure software engineers have
sufficient training. Ensure changes are not rushed. Perform quality assurance
activities on each change.

B ‘Political’ risks. Not everybody will be happy with the requirements. Not
everybody may want the system. Competition or organizational changes might
render the system less important or might result in project cancelation. Various
stakeholders may not understand certain software-engineering practices and
may want you to do things with which you disagree.

26|

Chapter |

Software and software engineering

.10 Summary

Resolution. Participate in promoting and marketing the project. Enhance your
negotiating and other ‘people’ skills. Regularly evaluate how the system will
impact all the stakeholders, and work closely with them to foster increased
understanding of issues.

We have emphasized in this chapter that software engineering is an emerging
engineering specialty in which you focus on solving a customer’s problem by
developing high-quality software.

Since software is relatively intangible, our ability to work with it is different
from other engineering products. It is possible for a beginner to rapidly program
a significantly sized system, make changes to source code in a matter of minutes,
and distribute thousands of copies at little cost. Unfortunately, developing
systems in a rapid and ad hoc way like this leads to excessive complexity and
increasing numbers of problems.

To perform good software engineering, it is necessary to incorporate
discipline into software development. Some ways of doing this include carefully
understanding users and their requirements, taking time to perform design, and
carefully evaluating the quality of the software. You also must keep systems
small at first to reduce the risk of failure, focus on delivering systems within a
tixed amount of time, and constantly reassess what you are doing so that you can
take action when problems arise.

Throughout the rest of this book we will present many different software
engineering techniques so that you can learn how to achieve the goal of solving
customers’ problems more effectively.

[.11 For more information

At the end of each chapter we will discuss sources of information that you can
consult to learn more about the material in that chapter. In this chapter, we list
general software engineering resources; in later chapters we list resources
covering specific issues.

The resources include web sites, books and periodicals. We have only listed
web sites that we believe to contain reasonably reliable information or useful sets
of links, which have stood the test of time, and are likely to be maintained. This
book’s web site (www.lloseng.com) contains a page with all the links shown in
the book, updated as necessary.

Software engineering magazines published by major organizations

IEEE Software, http://www.computer.org/software/
The IEEE Computer Society is one of the two most important international
organizations that focus on software engineering. They produce many software

Section I.11 | 27

For more information

engineering publications, but IEEE Software is probably the one most readable
by practitioners.

M [EEE Computer, http://www.computer.org/computer/
Also published by the IEEE Computer Society, this magazine covers a broader
spectrum of computing topics, including software engineering. All members of
the society receive this.

B Communications of the ACM, http://www.acm.org
The Association for Computing Machinery (ACM) is the other main
international organization involved in the development of software
engineering. CACM is not exclusively about software engineering, but has
many articles on this topic. It is included with membership in the ACM.

Other selected software engineering Internet sites

B The Software Engineering Body of Knowledge (SWEBOK), www.swebok.org
The goal of this project, initiated by the ACM and the IEEE, is to gather
together all the most important and widely accepted knowledge in software
engineering. The SWEBOK initiative is under continuous development, and is
an excellent resource to find detailed background material about the field.

B The ACM/IEEE software engineering code of ethics, http://www.acm.org/
serving/se/code.htm

B The Community for Software Engineers, www.software-engineer.org

B The Wikipedia entry for software engineering: http://en.wikipedia.org/wiki/
Software_engineering

B The Software Engineering Institute (SEI) at Carnegie Mellon University,
www.sei.cmu.edu
One of the foremost research institutes on software engineering.

General software engineering books

B Roger Pressman, Software Engineering: a Practitioners Approach, 6th edition,
McGraw Hill, 2004. This is one of the classic books covering all areas of
software engineering in considerable depth. http://www.rspa.com/about/
sepa.html

B Stephen R. Schach, Object-Oriented and Classical Software Engineering, 6th
edition, McGraw Hill, 2004. http://www.mhhe.com/catalogs/0072865512.mhtml

M Jan Sommerville, Software Engineering, 7th Edition, Addison-Wesley, 2004,
http://www.software-engin.com/

M Bernd Bruegge and Allen Dutoit, Object-Oriented Software Engineering: Using
UML, Patterns and Java, 2nd edition, Prentice Hall, 2004

28| Chapter |

Software and software engineering

B Shari Lawrence Pfleeger, Software Engineering: Theory and Practice, 2nd
edition, Prentice Hall, 2001.

The profession of engineering
B Greatest achievements of engineering: http://www.greatachievements.org
B Professional Engineering Institutions (UK): http://www.pei.org.uk
B Canadian Council of Professional Engineers: http://www.ccpe.ca

B National Society of Professional Engineers (US): http://www.nspe.org

Review of object orientation

As we mentioned in the last chapter, software engineers must have a good
understanding of the computing technology with which they work. In this chapter,
we review an important area of that technology: object-oriented programming.

It is our expectation that most readers will have learned the basics of object-
oriented programming in Java before reading this book.

If you do not know Java, but know another object-oriented language, such as
C++, C#, Delphi or Smalltalk, then the exercises at the end of this chapter will
help you make the transition to Java. We recommend you also make use of Java
learning resources, some of which we list at the end of the chapter.

Our goal with the use of Java in this book is to give you practical illustrations
of software engineering concepts.

In this chapter you will learn about the following

2.1

M The basic principles of object orientation.

M Classes and objects.

M Instance variables, attributes and associations.
M Methods, operations and polymorphism.

M Organizing classes into inheritance hierarchies.

M Evaluating alternative implementations of simple designs in Java.

What is object orientation?

Object-oriented systems make use of abstraction in order to help make software
less complex. An abstraction is something that relieves you from having to deal
with details. Object-oriented systems combine procedural abstraction with data
abstraction. To help you better understand what this means, we will first take a
look at these two types of abstraction.

30|

Chapter 2

Review of object orientation

Data abstraction

Procedural abstraction and the procedural paradigm

From the earliest days of programming, software has been organized around the
notion of procedures (also in some contexts called functions or routines). These
provide procedural abstraction. When using a certain procedure, a programmer
does not need to worry about all the details of how it performs its computations;
he or she only needs to know how to call it and what it computes. The
programmer’s view of the system is thus made simpler.

In the so-called procedural paradigm, the entire system is organized into a set
of procedures. One ‘main’ procedure calls several other procedures, which in
turn call others.

The procedural paradigm works very well when the main purpose of
programs is to perform calculations with relatively simple data. However, as
computers and applications have become more complex, so has the data.
Systems written using the procedural paradigm are complex if each procedure
works with many types of data, or if each type of data has many different
procedures that access and modify it.

Data abstractions can help reduce some of a system’s complexity. Records and
structures were the first data abstractions to be introduced. The idea is to group
together the pieces of data that describe some entity, so that programmers can
manipulate that data as a unit.

However, even when using data abstraction, programmers still have to write
complex code in many different places. Consider, for example, a banking
system that is written using the procedural paradigm, but using records
representing bank accounts. The software has to manage accounts of different
types, such as checking, savings and mortgage accounts (a checking account
would be called a cheque account or current account in some countries). Each
type of account will have different rules for the computation of fees, interest,
etc. Such a system would have procedures like the following pseudocode in
many different places:

if account is of type checking then
do something

else if account is of type savings then
do something else

else
do yet another thing

endif

Imagine also that clients can hold several accounts of different types, and some
accounts can be held jointly; also the different account holders might have
different rights. Rules to deal with issues like these would be scattered
throughout the code, making change very difficult.

Section 2.2 | 31

Classes and objects

The object-oriented paradigm: organizing procedural abstractions in the
context of data abstractions

Definition:

Figure 2.1

Starting in the late 1960s, programmers began to see the advantage of organizing
programs around data abstractions. They realized that they could make systems
much simpler by putting all the procedures that access or modify a particular class
of objects in one place, rather than having the procedures spread out all over the
system. This idea is the root of the object-oriented (OO) paradigm which, by the
1990s, had become accepted as the best way to organize most systems.

The object-oriented paradigm is an approach to the solution of problems in which all
computations are performed in the context of objects. The objects are instances
of programming constructs, normally called classes, which are data abstractions and
which contain procedural abstractions that operate on the objects.

In the object-oriented paradigm, a running program can be seen as a
collection of objects collaborating to perform a given task.

Figure 2.1 summarizes the essential difference between the object-oriented
and procedural paradigms. In the procedural paradigm (shown on the left), the
code is organized into procedures that each manipulate different types of data.
In the object-oriented paradigm (shown on the right), the code is organized into
classes that each contain procedures for manipulating instances of that class
alone. Later on, we will explain how the classes themselves can be organized into
hierarchies that provide even more abstraction.

Account
dit

T

credit debit || computelnterest computefees | |

if checking if checking CheckingAccount SavingsAccount
then xxx then xxx

if savings if savings computelnterest() computelnterest()
then xxx then xxx computeFees() computeFees()

etc. efc.

Organizing a system according to the procedural paradigm (left) or the object-
oriented paradigm (right). The UML notation used in the right-hand diagram will
be discussed in more detail later

22 Classes and objects

Classes and objects are the aspects of object orientation that people normally
think about first. In this section, we will define in more detail what we mean by
these two terms.

32

Chapter 2

Review of object orientation

Objects

Figure 2.2

An object is a chunk of structured data in a running software system. It can
represent anything with which you can associate properties and behavior.
Properties characterize the object, describing its current state. Behavior is the
way an object acts and reacts, possibly changing its state.

Figure 2.2 shows some of the objects and their properties that might be
important to a particular banking system. The notation used in Figure 2.2 to
represent objects is UML. We will show you some very simple UML notation in
this chapter; we will explain it in more detail in Chapter 5 and subsequent
chapters.

Jane:

dateOfBirth="1955/02/02"
address="99 UML St.”
position="Manager”

Savings account 12876:

balance=1976.32
opened="1999/03/03"

Greg:
dateOfBirth="1970/01/01" .
address="75 Object Dr.” Horgarel Instant teller 876
dateOfBirth="1984,/03/03"

address="150 C-++ Rd " location="Java Valley Cafe”

position="Teller"

Mortgage account 29865:

Transaction 487:
balance=198760.00 amount=200.00

opened="2003/08/12" time="2001/09/01 14:30"
property="75 Object Dr.”

Several objects in a banking application

The following are some other examples of objects:

In a payroll program, there would be objects representing each individual
employee.

In a university registration program, there would be objects representing each
student, each course and each faculty member.

In a factory automation system, there might be objects representing each
assembly line, each robot, each item being manufactured, and each type of
product.

In the above examples, all the objects represent things that are important to
the users of the program. You use a process often called object-oriented
analysis to decide which objects will be important to the users, and to work out
the structure, relationships and behavior of these objects.

When performing object-oriented analysis, you do not initially need to
understand how objects are physically represented using a particular
programming language, nor whether they are stored in random-access
memory or on disk. It is best to leave consideration of such issues until you

Section 2.2 | 33

Classes and objects

have completed object-oriented analysis, and moved on to object-oriented
design (OOD). We will discuss object-oriented analysis and design in detail
starting in Chapter 5.

Classes and their instances
Classes are the units of data abstraction in an object-oriented program. More
specifically, a class is a software module that represents and defines a set of
similar objects, its instances. All the objects with the same properties and
behavior are instances of one class.
For example, Figure 2.3 shows how the bank employees Jane and Margaret
from Figure 2.2 can be represented as instances of a single class Employee. Class
Employee declares that all its instances have a name, a date0fBirth, an address and
a position.

Employee

name
dateOfBirth
address
position

Figure 2.3 A class, representing similar objects from Figure 2.2

As a software module, a class contains all of the code that relates to its objects,
including:

B Code describing how the objects of the class are structured - i.e. the data stored
in each object that implement the properties.

B The procedures, called methods, that implement the behavior of the objects.

In other words, in addition to defining properties such as name and address,
as shown in Figure 2.3, an Employee class would also provide methods for
creating a new employee, and changing an employee’s name, address and
position. We will talk more about the contents of a class in Sections 2.3
and 2.4.

Sometimes it is hard for beginners to decide what should be a class and
what should be an instance. The following two rules can help:

B In general, something should be a class if it could have instances.

B In general, something should be an instance if it is clearly a single member of
the set defined by a class.

For example, in an application for managing hospitals, one of the classes
might be Doctor, and another might be Hospital. You might think that Hospital
should be an instance if there is only one of them in the system; however, the
fact that in theory there could be multiple hospitals tells us that Hospital
should be a class.

34|

Chapter 2

Review of object orientation

Example 2.1

Exercise

E4

Naming classes

In the following, we indicate whether each item should be a class or an instance. If
it should be a class, we describe its instances. If it should be an instance, we
describe its class.

Film: class; instances include ‘Star Wars” and ‘Casablanca’

Reel of film: class; instances are physical reels.

Film reel with serial number SW19876: instance of Reel0OfFilm.

Showing of ‘Star Wars’ in the Phoenix Cinema at 7 pm: instance of class
ShowingOfFilm.

Which of the following items do you think should be a class, and which should
be an instance? For any item that should be an instance, name a suitable class
for it. If you think an item could be either a class or an instance, depending on
circumstances, explain why.

(a) General Motors (b) Automobile company

(c) Boeing 777 (d) Computer science student
(e) Mary Smith (f) Game

(g) Board game (h) Chess

(i) University course SEG 2100 (j) Airplane

(k) The game of chess between Tom (1) The car with serial number
and Jane which started at 2:30 pm JM 198765T4
yesterday.

One of the first challenges in any object-oriented project is to name the classes.
Notice that the class names mentioned in the last subsection such as Employee,
Hospital and Doctor are nouns, have their first letter capitalized and are written in
the singular. These are important conventions that should be followed in all
object-oriented programs in languages like Java and C++. Being consistent
about capitalization ensures that readers of the program can tell what is a class
and what is not. Using the singular ensures that readers can tell that an instance
of the class is a single item, not a list or collection. If you want to give a class a
name consisting of more than one word, then omit the spaces and capitalize the
first letter of each word, for example: PartTimeEmployee.

Itis also important to choose names for classes that are neither too general nor
too specific. Many words in the English language have more than one meaning,
or are used with a broad meaning. For example, the word ‘bus’ could mean the
physical vehicle, or a particular run along a particular route, as in, T will catch
the 10:30 bus (but I don't care which vehicle is used)’. You might choose to call

Section 2.2 | 35

Classes and objects

Usage of the words ‘Instance’,‘Object’ and ‘Class’

A common question is: what is the difference between an instance and an object? The answer is that
they refer to the same thing; the difference is one of grammar and usage in the English language.
‘Instance’ is a role term, meaning that it is used to talk about the role an object plays, in this case as
an instance of a class.

It might be easiest to see this by analogy. There are many similar pairs of words in normal
English usage; ‘Daughter’, a role term, ‘Girl’, a non-role term; or ‘Father’, a role term,‘Man’, a
non-role term. If, for example, you saw some girls walking down the street and said, ‘| see
several daughters’, people would know what you meant, but it would sound funny. You would
normally instead say, ‘| see several girls’ On the other hand it would be quite reasonable to
say, ‘Jane has several daughters’

Thus it is possible to say, ‘instances are stored in memory’, although it sounds better to
say, ‘objects are stored in memory’. You also can say, ‘class Passenger has |0 objects’, but it
would sound better if you said, ‘class Passenger has 10 instances’.

You will sometimes read documents where the word ‘object’ is used when the author
really ought to have said ‘class’. For example, you might hear somebody incorrectly say,‘l just
finished designing the Passenger object. Although you would know what they mean in this
context, in other contexts using these terms loosely can be confusing. For example, if
somebody says, ‘the Employee object is stored in the database’, you might wonder if they mean
all the objects of the class, or just one particular object.

the class that represents physical vehicles BusVehicle and the class that represents
runs along a route BusRouteRun. Sometimes it is possible to be too specific in
naming a class: for example, when filling out a form, you may be asked to specify
the ‘city’ as part of an address. But not everybody lives in a city! Therefore, rather
than creating a class called City to store, for example, a person’s place of birth,
you should perhaps use the more general class name Municipality.

Another principle is to name classes after the things their instances represent in
the real world. Unless you are dealing with low-level system design, you should
avoid using words in class names that reflect the internals of a computer system
such as ‘Record, ‘Table, ‘Data, ‘Structure, or ‘Information’. For example, a class
named Employee would be acceptable, but one named EmployeeData would not.

Exercises

E5 Some of the following are not good names for classes in the scheduling system
of a passenger rail company. For each name, indicate whether it is a bad class
name, and if so, explain why and suggest a better name or names:

(a) Train
(b) Stop
(c) SleepingCarData

36| Chapter 2

Review of object orientation

(d) arrive
(e) Routes
(f) driver
(g) SpecialTrainInfo
E6 Identify all the classes you can think of that might be part of the following
systems, and choose good names for them.
(a) A restaurant reservation system.
(b) A video rental store.
(c) A weather forecasting system.

(d) A video editing tool.

2.3 Instance variables

A variable is a place where you can put data. Each class declares a list of variables
corresponding to data that will be present in each instance; such variables are
called instance variables.

Attributes and associations
There are two groups of instance variables, those used to implement attributes,
and those used to implement associations.
An attribute is a simple piece of data used to represent the properties of an
object. For example, each instance of class Employee might have the following
attributes:

name
dateOfBirth
socialSecurityNumber

telephoneNumber

address

An association represents the relationship between instances of one class and
instances of another. For example, class Employee in a business application might
have the following relationships:

supervisor (association to class Manager)
B tasksToDo (association to class Task)

We will talk about selecting and representing attributes and associations in
much more detail in Chapter 5.

Section 2.3 | 37

Instance variables

Variables versus objects

One common source of confusion when discussing object-oriented programs is
the difference between variables and objects. These are quite distinct concepts.

At any given instant, a variable can refer to a particular object or to no object
at all. Variables that refer to objects are therefore often called references.
During the execution of a program, a given variable may refer to different
objects. Furthermore, an object can be referred to by several different
variables at the same time.

The type of a variable determines what classes of objects it may contain. We
will explain the rules regarding this in later sections.

Variables can be local variables in methods; these are created when a method
runs and are destroyed when a method returns. However, objects temporarily
referenced by such variables may last much longer than the lifetime of the
method as long as some other variable also references the object.

Exercises

E7 Identify the attributes that might be present in the following classes. Try to be
reasonably exhaustive.

(a) Series (in a scheduling system for an independent television station)

(b) Passenger (in an airline system)

(c) Event (in a personal schedule system; a meeting might be a kind of event)
(d) Clasroom (in a university course scheduling system)

(e) PhoneCall (in the system of a mobile telephone company)

(f) AssemblyLine (in a factory automation system)

E8 Identify some associations that might involve the classes listed in the
previous exercise. For each association, indicate the other class that would
be involved.

Instance variables versus class variables

If you declare that a class has an instance variable called var, then you are saying
that each instance of the class will have its own slot named var. Therefore, for
example, each Employee has a supervisor. The actual data put into these variables
will vary from object to object: employees will have different instances of Manager
as their supervisors.

Sometimes, however, you want to create a variable whose value is shared by
all instances of a class. Such a variable is known as a class variable or static
variable. If one instance sets the value of a class variable, then all the other
instances see the same changed value.

38

Chapter 2

Review of object orientation

Class variables are often overused
by beginners in cases when they
should use instance variables. Class
variables are, however, useful for
storing the following types of
information:

Terminology for instance variables

and class variables

You may read the term ‘data
member’; this is C++ terminology
that means an instance variable. A
‘static data member’ is a class variable.
Default or ‘constant’ values that are The term ‘field’ is also often used to
widely used by methods in a class. collectively refer to both instance and

Lookup tables and similar structures ~ ©lass variables.

used by algorithms inside a particular
class.

24 Methods, operations and polymorphism

Definition:

The word ‘method is used in object-oriented programs where the words
‘procedure, ‘function’ or ‘routine might be used in other programs. Methods are
procedural abstractions used to implement the behavior of a class.

An operation is a higher-level procedural abstraction. It is used to discuss and
specify a type of behavior, independently of any code that implements that
behavior. Several different classes can have methods with the same name that
implement the abstract operation in ways suitable to each class. The word
‘method’ is used because in English it means ‘way of performing an operation.

We call an operation polymorphic, if the running program decides, every time
an operation is called, which of several identically named methods to invoke.
The program makes its decision based on the class of the object in a particular
variable. Polymorphism is one of the fundamental features of the object-
oriented paradigm.

polymorphism is a property of object-oriented software by which an abstract
operation may be performed in different ways, typically in different classes.

As an illustration of polymorphism, imagine a

C++ terminology for methods

For readers coming from the world of
C++, the term ‘function member’ or
‘member function’ is normally used in
that language instead of ‘method’. Also,
the term ‘virtual’ is used to indicate
methods that are implementations of a
single polymorphic operation. Hence,
polymorphic methods are sometimes
called ‘virtual functions’.

banking application that has an abstract operation
calculateInterest. In some types of account, interest is
computed as a percentage of the average daily balance
during a month. In other types of account, interest is
computed as a percentage of the minimum daily
balance during a month. In a mortgage account, to
which you can only deposit (make a payment) but from
which you cannot withdraw except initially, interest
may be computed as a percentage of the balance at the
end of the month.

Section 2.5 | 39

Organizing classes into inheritance hierarchies

In the banking system, the three classes CheckingAccount, SavingsAccount and
MortgageAccount would each have their own method for the polymorphic operation
calculateInterest. When a program is calculating the interest on a series of accounts,
it will invoke the version of calculateInterest specific to the class of each account.

Exercise

E9 For each of the following sets of classes, find an appropriate superclass and the
polymorphic operations that should be included in this superclass. Explain the
way these operations would behave in each subclass and identify some
operations that might be present in only one of the subclasses.

(a) Square, Circle, Rectangle
(b) Truck, Ambulance, Bus

(c) Techician, AdministrativeAssistant, Manager

2.5 Organizing classes into inheritance hierarchies

If several classes have attributes, associations or operations in common, it is
best to avoid duplication by creating a separate superclass that contains these
common aspects. Conversely, if you have a complex class, it may be good to
divide its functionality among several specialized subclasses.

For example, imagine you are creating a banking application in which
there are several kinds of accounts. Some things are common to all accounts,
such as having a balance and an owner, as well as being able to deposit
money in the account, open it and close it. Other things differentiate the
accounts - for example, a mortgage account has a negative balance as well as
a property (e.g. a house) as collateral; a savings account might have certain
privileges associated with it such as higher interest for keeping a high
balance in it. In this example we would say that class Account should be the
superclass of subclasses SavingsAccount, CheckingAccount and MortgageAccount.

The relationship between a subclass and an immediate superclass is called
a generalization. The subclass is called a specialization. A hierarchy with one
or more generalizations is called an inheritance hierarchy, a generalization
hierarchy or an isa hierarchy. The reason for the latter name will become

clear shortly.
C++ terminology for You can draw inheritance hierarchies graphically as shown
superclass and subclass in Flgqre 24 The. little triangle symbolizes one or more
. generalizations sharing the same superclass, and points to the
In C++, a superclass is called a 3 h)
‘ ' b .. superclass. It is clearest when such diagrams are drawn with the
base class’, while a subclass is
A) superclass at the top and the subclasses below, although other
called a ‘derived class’.
arrangements are also allowed.

40| Chapter 2

Review of object orientation

Figure 2.4

Definition:

Account

/N

SavingsAccount CheckingAccount MortgageAccount

Basic inheritance hierarchy of bank accounts

It is also possible to show inheritance hierarchies textually using indentation,
like this:

Account
SavingsAccount
CheckingAccount

MortgageAccount

inheritance is the implicit possession by a subclass of features defined in a
superclass. Features include variables and methods.

You control inheritance by creating an inheritance hierarchy. Once you define
which classes are superclasses and which classes are their subclasses, inheritance
automatically occurs.

For example, all the features of Account are also present in SavingsAccount,
CheckingAccount and MortgageAccount. Figure 2.5 expands on Figure 2.4, showing
a variety of attributes and operations possessed by Account that would also be
inherited by the three subclasses. Attributes are shown in the middle of the class
box; operations are shown at the bottom. The inherited features are not
explicitly shown in the subclasses to make the diagram clearer; however, any
new features exclusive to each subclass are shown.

Organizing classes into inheritance hierarchies is a key skill in object-oriented
design and programming. It is easy to make mistakes and create invalid
generalizations. One of the most important rules to adhere to is the isa rule. The
isa rule says that class A can only be a valid subclass of class B if it makes sense,
in English, to say, ‘an A is a B’ For example it makes sense to say ‘a SavingsAccount
is an Account’ ; it does not make sense to say the inverse, ‘an Account is a
SavingsAccount” You should test all superclass—subclass pairs (generalizations)
against the isa rule. It is for this reason that inheritance hierarchies are often
called isa hierarchies.

When you detect a violation of the isa rule, it is a clear indication that you have
made an invalid generalization. However, not all cases where the isa rule holds
are good generalizations. Other important points you should check are:

If you have given the subclass or superclass ambiguous names (such as ‘Bus’ as
described earlier), you will often create bad generalizations.

Section 2.5 | 41

Organizing classes into inheritance hierarchies

Account

balance
openedDate
creditOrOverdraftlimit

credit()
debit()

SavingsAccount CheckingAccount MortgageAccount
highestCheckNumber collateralProperty

collateralValue
withdrawUsingCheck()

calculateServiceCharge()

setCollateralValue()

Figure 2.5 Inheritance hierarchy of bank accounts showing some attributes and operations

B A subclass must retain its distinctiveness throughout its life. For example if you
decided to create a subclass OverdrawnAccount, the isa rule appears to hold: ‘An
overdrawn account is an account. However, an overdrawn account will not
remain a distinct type of account once enough money is deposited into it.
Therefore this is not a good generalization; in fact, the class OverdrawnAccount
should not be a separate class.

M All the inherited features must make sense in each subclass. In Figure 2.5 you
must ensure that each of the three subclasses can have a balance, an openedDate
and a creditOrOverdraftLimit. You must also make sure that it makes sense to
perform the operations credit and debit in each subclass, and that all methods of
these operations will behave consistently. You may think that debit would not
apply to MortgageAccount; however, remember that when the account is first
created, a large debit is made. We will discuss this issue more in the next section.

It is a common mistake for designers to
overlook these three checks. If the checks
are overlooked, the resulting code then
needs many special conditions to deal with
unwanted inheritance, and it becomes hard
to understand.

Key conclusions we can draw from the
above are: generalizations and their
resulting inheritance help to avoid
duplication and improve reuse; but poorly
designed generalizations can actually cause
more problems than they solve.

The Liskov Substitution
Principle

The Liskov Substitution Principle says
this: if you have a variable whose
type is a superclass (e.g. Account),
then the program should work
properly if you place an instance of
that superclass or any of its
subclasses in the variable. The
program using the variable should
not be able to tell which class is
being used, and should not care.

42| Chapter 2

Review of object orientation

Example 2.2

Figure 2.6

Organize the following set of classes into hierarchies: Circle, Point, Rectangle,
Matrix, Ellipse, Line, Plane.

Figure 2.6 shows one possible solution - there can often be more than one
acceptable answer to this kind of question.

| MathematicalObject |

X~

[[|
| Shape | | Point | | Matrix |

A

/\ /\

Ellipse | | Polygon | | Line | | Plane |

| Circle || Quadrilateral |

Rectangle

A possible inheritance hierarchy of mathematical objects

The following are some possible changes to Figure 2.6 that can be debated:

You could consider a Point to be a degenerate Shape. But how many dimensions
does it have? A point could have any number of dimensions. Perhaps what is
needed is to have separate classes Point2D and Point3D.

A Line, similarly, can be 2-dimensional or 3-dimensional.

The fact that Circle is shown as a subclass of Ellipse is interesting.
Mathematically, a circle has all the properties of an ellipse. An ellipse has two
foci; in a circle these two foci are constrained to be equal to each other - at the
center. In an object-oriented system, subclasses must have all the properties of
their superclass; in the case of the ellipse, a valid operation is to change one of
the foci. This implies we should be able to change one focus of a Circle, which
is a bit odd. We could permit this as long as doing so automatically changes the
other focus so that the circle remains a circle with one center. However, this
solution is not entirely satisfactory since every instance of Circle must still have
two attributes to store the foci. An alternative sub-hierarchy, showing a
different way of arranging the attributes of circles and ellipses, is shown in
Figure 2.7. Yet another option is to get rid of the Circle class entirely and just
use the Ellipse class; you might then add a Boolean attribute constrainAsCircle
to Ellipse if you wanted certain ellipses to always remain circles.

Figure 2.7

Exercises

EllipticalShape

A

Circle

center

Ellipse

focus1
focus2

Section 2.5 | 43

Organizing classes into inheritance hierarchies

An alternative approach to defining ellipses and circles that avoids difficulties that

would occur if Circle were a subclass of E1lipse

EI0 Which of the following would not form good superclass-subclass pairs
(generalizations), and why? Hint: look for violations of the isa rule, poor

naming, and other problems.

(a) Money — CanadianDollars

(b) Bank — Account

(c) OrganizationUnit — Division

(d) SavingsAccount — CheckingAccount

(e) Account — Account12876

(f) People — Customer

(g) Student — GraduateStudent

(h) Continent - Country

(i) Municipality - Neighborhood

Ell What problems could arise by making Quadrilateral and Rectangle subclasses of
Polygon? What alternatives are possible? What are the advantages and

disadvantages of each alternative?

El2 Organize each of the following sets of items into inheritance hierarchies of
classes. Hints:

B For each set of items, you will have several distinct hierarchies.

B You will need to add additional classes to act as superclasses. You will also need
to change some names, and you will discover that two items may correspond to
a single class.

B Think of important attributes present in your classes. Make sure that attributes
in a superclass will be present in each of its subclasses.

B Remember to use the isa rule.

44| Chapter 2

Review of object orientation

a)

b)

<)

d)

e)

f)

g

Vehicle
Airplane

Jet engine
Transmission

Edition of book
Issue of newspaper
Newspaper
Chapter

Copy of issue of
magazine

Schedule
Chartered bus
Luxury bus
Unscheduled trip

Student

Graduate student
Teaching assistant
Classroom
Building
Laboratory

Currency

Financial instrument

Check

Visa

Bank account
US dollars

Hotel room

Suite

Meeting organizer
Guest

Conference

Insurance policy
Insurance client
Home policy
Policy renewal

Car

Amphibious vehicle
Electric motor
Truck

Copy of book
Magazine

Issue of magazine
Author

Bus
Bus route
Tour bus

Course
Course section

Administrative assistant

Time slot
Gymnasium
Tutorial

Exchange rate
Credit card
Credit Union
MasterCard
Bank branch

Meeting room

Hilton (the hotel chain)

Catered function
Reservation
Conference room

Claim
Insured property
Life insurance

Sports car
Engine
Wheel
Bicycle

Volume

Work of literature
Publication
Publisher

Trip
Express bus
Route

Professor

Program of studies
Technician
Meeting room
Registration system
Exam

Bank

Debit card

Bank machine
Loan

Canadian dollars

Ballroom
Ottawa Hilton
Booking
Meeting

Item on bill

Deductible
Automobile policy
Beneficiary

Section 2.6 | 45

The effect of inheritance hierarchies on polymorphism and variable declarations

h) Telephone Phone line Digital line
Phone call Conference call Call waiting
Extension Feature Call on hold
Caller Call forwarding Forwarded call
Telephone number Voice mail message Voice mail

Voice mail box

2.6 The effect of inheritance hierarchies on polymorphism and variable declarations

Much of the power of the object-oriented paradigm comes from polymorphism
and inheritance working together. In this section we will investigate this synergy.

Figure 2.8 shows an expanded version of the hierarchy of two-dimensional
shapes from Figure 2.6, also incorporating the EllipticalShape class from
Figure 2.7, as well as a modified Polygon hierarchy. We will use Figure 2.8 to
illustrate several important points; you should study it and try to understand it
before proceeding.

Figure 2.8

Shape2D
center
translate()
getCenter()
rotate()
changeScale()
getArea()
getPerimeterlength()
getBoundingRect()
[4 1
EllipticalShape Polygon
semiMajorAxis getBoundingRect()
4 getVertices()
| | o |
Circle Ellipse SimplePolygon ArbitraryPolygon
rotate() semiMinorAxis orientation points
changeScale() orientation
getAreal() rotate()) addPoint()
getPerimeterLength() rohtcfe() | getOrientation() removePoint()
getBoundingRect() changeScalef) 4& rotate()
getRadius() ge'Ar?"() changeScale()
getPerlme.terLeng‘rh() [| getAreal()
getBoyndln.gRecf() Rectangle RegularPolygon getPerimeterLength()
getOrle.ntoh.on() . - : getVertices()
getSemiMajorAxis() || height numPoints
getSemiMinorAxis() || width radius
getFocus1() changeScale() changeNumPoints()
getFocus2() setHeight() changeScale()
setWidth() getAreal()
getAreal() getPerimeterlength()
getPerimeterlength() || getVertices()
getVertices()
getBoundingRect()

A hierarchy of shapes showing polymorphism and overriding

46| Chapter 2

Review of object orientation

Figure 2.9

Figure 2.8 is a four-level hierarchy with four generalizations. The classes at the
very bottom of the hierarchy are called leaf classes.
The following explains certain details of some of the classes:

An Ellipse is defined using the lengths of two axes: the longer one is called the
major axis, and the shorter one the minor axis. The semi-major axis is half the
major axis; in a circle, the semi-major axis and the semi-minor axis are equal to
the radius.

A RegularPolygon is any shape whose vertices can be all placed on the
circumference of a circle and whose side lengths are equal; for example, an
equilateral triangle, square or regular pentagon.

An ArbitraryPolygon is any polygon that is neither a rectangle nor regular. It is
defined by a set of points.

Class Shape2D lists seven operations. Since this is the ultimate superclass of the
hierarchy, these seven operations are all inherited by each of the other eight
classes. This means that each operation must make sense and behave consistently
in all the classes. In this example, the various subclasses will use different
methods for most operations. We will discuss this further, below.

Three of the operations in Shape2D modify the shape. The effect of these
operations is illustrated in Figure 2.9.

getBoundingRect

rotate(30) s
>

translate(5,5)

changeScale(50)

changeScale(150) ©

Effects of certain operations on an Ellipse and an ArbitraryPolygon

3
i
A

rotate: takes one argument, the number of degrees to rotate the shape. The
shape is modified as a result of the rotation.

translate: takes two arguments, an x-amount and a y-amount and moves the
shape in the x- and y-directions.

changeScale: takes one argument, a percentage, and makes the shape bigger or
smaller, keeping its center the same.

Section 2.6 | 47

The effect of inheritance hierarchies on polymorphism and variable declarations

The getCenter operation simply returns the value of the center instance variable.
The getArea and getPerimeterLength operations compute a value and return it.
The getBoundingRect operation returns a non-rotated Rectangle that would be just
big enough to fit around the shape - this is also illustrated in Figure 2.9.

Abstract classes and abstract methods

There are separate methods in four different classes to compute the operation
rotate. Each method takes advantage of properties unique to its class:

M circle: rotating a circle does not change it! Therefore the rotate method in
class circle would do absolutely nothing. The method would exist but would
immediately return.

B simplePolygon and Ellipse: these classes have an attribute called orientation,
which the rotate method simply has to modify.

B ArbitraryPolygon: rotating one of these would be a little more complex. See a
textbook on computer graphics to learn precisely how to do it.

However, it is not possible to write a method to rotate instances of the
superclasses of these four classes. This is because there is not enough
information available in those classes to do the rotation. This leads us to two
important conclusions:

1. The rotate operation found in Shape2D is an example of an abstract operation. If a
class has an abstract operation, it means that no method for that operation exists in
the class, although the operation makes logical sense for it and for all the classes
below it in the hierarchy. Abstract operations are shown in italics in Figure 2.8. Leaf
subclasses have to have or inherit implementations of each operation - in other
words, you can have abstract operations anywhere except leaf classes.

2. The four classes, Shape2D, EllipticalShape, Polygon and SimplePolygon, must be
abstract classes. An abstract class is one that cannot have any instances. Any
class, except a leaf class, can be declared abstract; however, a class that has one
or more abstract methods must be declared abstract. The main purpose of an
abstract class is to hold features that will be inherited by its subclasses. If a class
is not abstract, then it is said to be concrete, and instances of it can be created.
Leaf classes must be concrete, although it is also possible to have concrete
classes higher in the inheritance hierarchy.

You should also note the following other interesting facts about abstract classes
and methods in the shape hierarchy of Figure 2.8:

M In addition to rotate, all but two of the other operations in class Shape2D are
abstract. As required, these have concrete implementations by the time the leaf
classes are reached. However, the concrete implementations do not actually
have to be defined in the leaf classes — they can be defined higher in the
hierarchy. For example, rotate is defined in the abstract class SimplePolygon.

48|

Chapter 2

Review of object orientation

Overriding

B Class simplePolygon is abstract, even though it has two concrete methods. This

is because it neither has nor inherits concrete implementations of operations
changeScale, getArea and getPerimeterLength.

There is an abstract operation getBoundingRect in class Shape2D of Figure 2.8. It
has a concrete implementation in Polygon, since it is possible to design a general
algorithm for computing the bounding rectangle if you can compute the
vertices of a shape - and class Polygon does have such a method, called
getVertices.

Class Polygon declares the operation getVertices, yet the operation does not
exist in its superclass Shape2D. This is because it only makes sense to talk about
vertices of polygons; no vertices exist in smooth-curved shapes such as ellipses.

Operation getVertices is abstract in Polygon, even though the concrete method
getBoundingRect calls it. Such calling of an abstract operation by a concrete
method is quite legal and in fact is considered good design practice.

Operation getVertices has concrete implementations in the three leaf classes
below Polygon, but not in the immediate subclass SimplePolygon, because there is
not enough information to compute the vertices in that class.

The attribute semiMajorAxis is present in EllipticalShape; however, it is not
accessed by any method in that class. This is because Circle accesses it using the
method name getRadius — it would be odd to be able to talk about the semi-
major axis of a circle even though mathematically it is equivalent to the radius.

In addition to the implementation of getBoundingRect in Polygon, there is also
another concrete implementation in class Rectangle (which is a subclass of
Polygon). This second concrete implementation is said to override the version of
getBoundingRect that otherwise would be inherited from Polygon. The
getBoundingRect method in Rectangle computes the same result as the method in
Polygon, but the overriding version in Rectangle can be more efficient: in those
cases where the Rectangle is not rotated, its bounding rectangle is the Rectangle
itself.

In general, there are three valid reasons for overriding methods: restriction,
extension and optimization:

Overriding for restriction occurs when the overriding method prevents a
violation of certain constraints that are present in the subclass, but were not
present in the superclass.

For example, imagine there was a changeScale(x,y) method in Shape2D that
allowed a shape to be distorted by having its width and height modified by
different percentages. It would be reasonable to use this method to modify any
ArbitraryPolygon, Ellipse or un-rotated Rectangle. However, scaling a Circle in
this way would mean that it would no longer be a Circle - it would be an Ellipse.

Section 2.6 | 49
The effect of inheritance hierarchies on polymorphism and variable declarations

. You might therefore consider creating an overriding
C++ termmOIOgy for abstract version of changeScale(x,y) in Circle which throws an
operations exception if x and y are not equal to each other. Similarly,
You may hear the term ‘pure virtual non-uniform scaling of a RegularPolygon should be

function’. This is C++ terminology for forbidden.
‘abstract operation’. As another example of overriding for restriction,
imagine adding a concrete version of debit in
MortgageAccount in Figure 2.5 that restricts your ability to withdraw money from
the account: MortgageAccount might allow you to only withdraw a fixed amount
when the account is first opened. Any other attempt to withdraw money would

throw an exception.

Overriding for restriction can have some undesirable effects. It is important
to ensure that all polymorphic methods implementing an abstract operation
behave consistently. For example, if the implementations of debit in some classes
may throw an exception, while other implementations of debit do not declare
that they too may throw the exception, then consistency is being violated. The
programmer can solve this problem by declaring that the exception may be
thrown by any of the polymorphic implementations of debit, even though he or
she knows that certain of the methods will not in practice do so. Users of the
operation must therefore always prepare for the exception (in Java, by using a
try—catch construct).

M Overriding for extension occurs when the overriding method does basically
the same thing as the version in the superclass, but adds some extra capability
needed in the subclass. For example, in Figure 2.5, there might be a version of
debit in SavingsAccount that would charge an additional fee if your bank balance
was less than $1500.

B Overriding for optimization occurs when the overriding method in the subclass
has exactly the same effect as the overridden method, except that it is more
efficient. Above, we described a case of this in which getBoundingRect can often be
computed more efficiently in the Rectangle class than in the general case.

Exercises

EI3 This question requires knowledge of very basic geometry. Describe in one
paragraph how the different polymorphic implementations of the following
operations from Figure 2.8 would work in classes Rectangle, RegularPolygon, Circle
and their superclasses. You do not need to write any code; instead just describe
what attributes would be used and/or modified, and the formula to be used (if any).

(a) translate
(b) changeScale
(c) getArea
(d) getCenter

50

Chapter 2

Review of object orientation

El4

EI5

El6

EI7

Explain how you would incorporate the operations flipHorizontally and
flipVertically into the hierarchy of Figure 2.8. Describe which classes (if any)
should declare these to be abstract operations, and which classes should have
methods for them.

Explain how you would incorporate the following classes into the hierarchy of
Figure 2.8. Describe the attributes and operations that would be present in
these classes.

(a) IsoscelesTriangle

(b) Square

(c) Star

Describe what the methods addPoint and removePoint in class ArbitraryPolygon

would have to do. Hint: think about what attributes would be affected, and
how. You do not need to write any code.

Imagine you want to create an operation called getEnclosingCircle in the
hierarchy of Figure 2.8. This operation would compute the smallest circle that
can completely enclose any shape. Describe the methods that you think would
be needed to implement this operation.

Variables and dynamic binding

Imagine you are programming in an object-oriented language and declare a
variable called aShape that has type Shape2D. What this means is that as the
program runs, the variable can contain objects of any concrete class in the
hierarchy of Shape2D.

If you then attempt to invoke the operation getBoundingRect on the variable
aShape, the program will make the decision about what method to run ‘on the fly’
The decision-making process is called dynamic binding (or sometimes late
binding or virtual binding).

You can imagine that the following procedure is used to perform dynamic
binding:

. The program looks in the class of the object actually stored in the variable. If

there is a concrete method for the operation in that class, then it runs the
method.

. Otherwise, it checks in the immediate superclass to see if there is a method

there; if so, it runs the method.

. The program repeats step 2, looking in successively higher superclasses until it

finds a concrete method and runs it.

. If no method is found, then there is an error.

Section 2.6 | 51

The effect of inheritance hierarchies on polymorphism and variable declarations

Therefore, for example, if you had an instance of RegularPolygon in the aShape
variable, and invoked the operation getBoundingRect, the program would look
first in RegularPolygon, then SimplePolygon and finally Polygon before it finds a
method to run.

If ashape had contained an instance of Rectangle, however, then the program
would find a getBoundingRect method in that class immediately.

It would be inefficient if programs ran the above dynamic binding algorithm
for every procedure call, therefore an optimized approach using a lookup table
is used instead. However, programmers do not normally need to be aware of the
optimized mechanism.

Dynamic binding is what gives polymorphism its power. It relieves
programmers from the burden of having to write conditional statements to
explicitly choose which code to run; with dynamic binding, that work is done
automatically by the programming language.

Dynamic binding is only needed when the compiler determines that there is
more than one possible method that could be executed by a particular call.
Therefore, for example, if you declared a variable to have type Rectangle, and you
could be sure that Rectangle would have no subclasses, then only a Rectangle
could be put in that variable. In such a case, the compiler can statically
determine precisely which method to call.

Exercise
EI8 In which of the following situations would dynamic binding be needed?
Assume that the compiler knows that no new classes or methods can be added
to the hierarchy.
You have a variable of type: You invoke the operation:
a) Rectangle getPerimeterLength
b) SimplePolygon getCenter
c) Polygon getBoundingRect
d) EllipticalShape getScale
e) RegularPolygon translate
Interfaces

An interface in Java is very much like an abstract class, except that it can have
neither instance variables nor concrete methods - it is basically a named list of
abstract operations. We instead create several implementing classes (rather than
subclasses) of an interface that must implement the abstract operations. A class
can implement multiple interfaces, but can have only one superclass.

52|

Chapter 2

Review of object orientation

You will see many interfaces built into Java: for example Comparable is an
interface that defines operations that allow objects to be compared, and Runnable
is an interface that allows an object to execute as a thread.

A key feature that gives interfaces their power is that you can declare a
variable with an interface as its type. This means that an instance of any class
that implements the interface can be put in the variable. With the variable, you
can then call any of the operations defined in the interface — dynamic binding
operates in the same way as with generalization.

We will see in Chapters 5, 6 and 9 that interfaces are very useful for
creating good-quality designs.

2.7 Concepts that define object orientation

We have looked at several important aspects of object orientation. It is now
time to summarize what we have presented and, at the same time, point out
the essential features that distinguish an object-oriented language or system
from one that is not object oriented. To be called object oriented, a language
needs to have the following features:

Identity. The language must allow a programmer to refer to an object without
having to refer to the instance variables contained in the object. Every object
has a unique identity; therefore objects that contain instance variables with the
same values must be recognized as different objects.

Classes. The programmer must be able to organize the code into classes,
each of which describes the structure and function of a set of objects.

Inheritance. There has to be a mechanism to organize these classes into
inheritance hierarchies, where features inherit from superclasses to subclasses.

Polymorphism. There has to be a mechanism by which several methods, in related
classes, can have the same name and implement the same abstract operation. There
must consequently be a dynamic binding mechanism that allows the choice of
which method to run to be made during execution of the program.

Sometimes, languages or systems are sold that purport to be object oriented;
however, without these key capabilities the term object oriented should not
be applied. The term ‘object based’ is sometimes used instead of ‘object
oriented” for technologies which have features like objects or classes but
which are perhaps missing inheritance, polymorphism or both.

The following four concepts are enhanced by the presence of the points
listed above, and are also integral to object-oriented languages and systems.
They allow us to engineer software effectively. We will revisit some of these
issues later in the book.

Abstraction. As discussed at the beginning of the chapter, creating an
abstraction means creating a simplified representation of something that you

Section 2.7 | 53

Concepts that define object orientation

can work with in place of the original thing. Abstractions help you deal with
complexity because you can reason about the simpler abstractions instead of
the full details of something. There are many abstractions in an object-oriented
program:

J An object is an abstraction of something of interest to the program,
normally something in the real world such as a bank account.

1 A class is an abstraction of a set of objects; at the same time it also acts as an
abstract container for the methods that operate on those objects. The
abstraction is improved if fewer methods are public.

J A superclass is an abstraction of a set of subclasses: you can declare a
variable to be of a certain class, and not care that instances of its subclasses
may be put in the variable. An interface is a similar but even better
abstraction since it has fewer details defined (only abstract operations).

J A method is a procedural abstraction that hides its implementation: you
can call the method without having to know the implementation.

'J An operation is an abstraction of a set of methods. Better abstraction is
achieved by giving an operation fewer parameters.

J Attributes and associations are abstractions of the underlying instance
variables used to implement them.

B Modularity. An object-oriented system can be constructed entirely from a set
of classes, where each class takes care of a particular subset of the functionality
(functionality related to a given type of data), rather than having the
functionality spread out over many parts of the system.

B Encapsulation. A class acts as a container to hold its features (variables and
methods) and defines an interface that allows only some of them to be seen
from outside.

B Abstraction, modularity and encapsulation each help provide information
hiding. This arises when software developers using some feature of a
programming language or system do not need to know all the details; they only
need to know sufficient details to use the feature. The result is that the
developers have less confusing detail to understand and will therefore make
fewer mistakes. Hence they can work effectively with larger systems.

Exercise

EI9 Search the Internet for programming languages, databases or other tools on the
market that call themselves object oriented. See if you can determine whether
the claim of being object oriented is valid.

54|

Chapter 2
Review of object orientation

History of object orientation - programming languages

The first object-oriented programming language was Simula-67. This language allows programmers to
simulate the way objects behave in the real world. For example, a simulation application might model
cars approaching an intersection controlled by traffic lights. The objects in this simulation would include
cars, lights and traffic lanes. When running a Simula program, each object is represented by a ‘chunk’ of
data. All the procedures that operate on that object are found together in a class, so that the
programmer can easily change the behavior of a car or a traffic light without having to search through
the entire program.

Although Simula-67 was intended as a special-purpose simulation language, software
developers gradually recognized that a wide variety of programs would be easier to develop and
understand if organized this way. Although Simula is still used today, mostly in Scandinavia, it
never gained widespread popularity.

In the early 1980s a new object-oriented language called Smalltalk gained popularity. Smalltalk
was developed at Xerox PARC (Palo Alto Research Center). This research lab is also credited
with giving rise to many other inventions, which we take for granted today: graphical user
interfaces, the mouse, the laser printer, etc.

Smalltalk has many features that were innovative at the time. It has a simple syntax that is
quite unlike that of other popular languages. It has a large library of reusable code — and
programmers have access to all the source code for the library. Smalltalk popularized bytecode,
platform independence and garbage collection,as now found in Java.

Smalltalk is still used today and has a loyal following, but it was rapidly overtaken in the late
1980s by a new language called C++. The developer of C++, Bjarne Stroustrup, recognized the
advantage of object orientation but also recognized that there were tremendous numbers of
programmers of the C language who wanted to take advantage of their C expertise and C’s
execution speed. He thus added object-oriented extensions to C and the new language became
rapidly dominant.

However, over |5 years of experience has shown that C++ has certain drawbacks. Its syntax is
quite complex and it is too easy to create code that has bugs. Large C++ programs have thus been
found to be hard to maintain — they deteriorate rapidly as many programmers make changes.

In 1991, a group of engineers at Sun Microsystems started a project to design a programming
language that could be used in consumer ‘smart devices’. Knowing the strengths and weaknesses
of C++, Smalltalk, and a third language called Objective-C, they invented a language initially called
Oak. This borrowed the C syntax from C++, and many of its other essential features from
Smalltalk. Some of the more troublesome features of C++, such as multiple inheritance and the
ability to create pointers to arbitrary parts of memory, were eliminated.

Unfortunately, the team faced difficulties trying to sell Oak. It was only when the Internet
gained popularity, with the advent of the World Wide Web in 1994, that Sun saw an opportunity
to exploit the technology. The new language, renamed Java, was formally presented in 1995 at
the SunWorld ’95 conference.

More recently, Microsoft has entered the fray with its language C# (C-Sharp). C# has very
many similarities with Java, but some subtle and interesting differences. C# is one of several
languages that can run on Microsofts Common Language Runtime, and is part of its .Net
framework. Anyone who knows Java should be able to learn C# quite easily.

We will continue this history of object orientation in Chapter 5, where we will look at
methods and notations for describing object-oriented systems.

Section 2.8 | 55

A program for manipulating postal codes

2.8 A program for manipulating postal codes

On the book’s web site (www.lloseng.com) you will find a Java program
designed to illustrate the most important features of Java, including inheritance,
polymorphism, string manipulation, access control. The program also
illustrates an important software engineering concept: separation of the user
interface from the functional part of a system.

The example is divided into three elements, as illustrated in Figure 2.10. The
tirst element is a hierarchy representing postal codes of different countries. The
second element is a new exception class. The third element is the PostalTest class
that allows the user to enter postal codes and test the facilities of the PostalCode

hierarchy.
PostalCode
PostalCodeException toString() PostalTest
getCode() main)
getDestination() s
setDestination()
validate()
getCountry()
[[]

BritishPostalCode CanadianPostalCode USZipCode

validate() validate() validate()

getCountry() getCountry() getCountry()

Figure 2.10 Classes for manipulating postal codes, showing public methods

The PostalCode hierarchy

The following are some design decisions you should study in PostalCode and its
subclasses:

B PostalCode is declared as abstract, meaning that no instances can be created.
Two of its operations, validate and getCountry, are abstract, meaning that they
must be given concrete implementations in subclasses.

B The operation validate is protected, and is called by the constructor. Its
concrete implementations in each subclass will throw a PostalCodeException
(described below) if the format of the code is invalid.

B All the instance variables are declared private. All other classes, including
subclasses, can only access them using methods. This helps to improve
encapsulation.

B There is a toString method, as should be provided in most Java classes.

There are three examples of subclasses of PostalCode. Each of these implements
the two abstract operations. For example, the validate method of one subclass,

56| Chapter 2

Review of object orientation

CanadianPostalCode, ensures that the format is XNX NXN, where N is a number
and X is a letter; the first letter is also taken from a restricted set. The other
implementations of validate ensure that US postal codes have an all-numeric
format, while British postal codes adhere to their more complex alphanumeric
format.

The PostalCodeException class

PostalCodeException illustrates the concept of the user-defined exception class.
Instances of this class are thrown when an error is found while validating a
postal code. A class that manipulates postal codes could choose to handle such
exceptions in any way it wishes.

The user interface class PostalTest

Exercises

E20

E2|

The user interface class, PostalTest, has only a static main method and one private
static helper method called getInput. The code prompts the user for input and
then attempts to create an instance of one of the subclasses of PostalCode. If a
PostalCodeException is thrown, it tries to create an instance of other subclasses
until none remain. Then it prints out information about the result. Clearly this
is not a sophisticated user interface, nevertheless it is sufficient to test the
facilities of the PostalCode hierarchy.

It would be possible to put all the code from PostalTest into PostalCode — the
main method in PostalCode would then simply be used to test the class. This is, in
fact, a design alternative that some people would choose. We prefer to advocate
the complete separation of the classes that do the user interface work from the
functional classes.

PostalTest is a rather degenerate class in the object-oriented sense, since it will
never have any instances. If any instances were created, then they could do
nothing since there are no constructors, instance variables or instance methods.
The main method and its helper methods are class methods (also called static
methods), reminiscent of the procedural paradigm. For the purposes of having
a simple test class, we believe this is acceptable; however, you should be careful
not to force class methods to do work that would be better done in instance
methods.

Run the postal code program. Then carefully read through the code for all six
classes. Use the Java documentation to look up any methods or classes you do
not understand.

The way the program is written, letters in Canadian postal codes are only
accepted if they are upper case. On the other hand, letters in British postal
codes are accepted whether they are upper case or not. This is inconsistent.

Section 2.9 | 57

Classes for representing geometric points

Modify the program so that user input of upper or lower case is accepted, and
the input is converted to upper case immediately.

E22 Describe how you would design the following modifications to the postal code
program. Think carefully about whether there should be one method, or
several different polymorphic methods. In the latter case, think about whether
there should be an abstract method in the superclass and concrete methods in
the subclasses, or else a concrete method in the superclass and one or more
overriding methods in the subclasses.

(a) There should be an operation length that returns the number of characters
in a postal code.

(b) There should be a file that contains postal codes, one per line. There should
then be an operation called isOnRecord that returns true if a postal code is in
this file. Do not worry for now about the efficiency of this operation in the
case of very large files, although you should be aware that this would be a
concern in a production-quality system. Hint: investigate class
FileInputStream.

(c) For each country, there should be a file that contains, on each line, a postal code
prefix followed by the name of a destination of such postal codes. For example,
class BritishPostalCode might use the file BritishPostalDestinations.txt, and
on one of its lines it might contain ‘SW Southwest-London’ The parts of the
program that set the destination should read these files.

E23 Implement the designs you prepared in the above exercise.

E24 Add a new subclass representing postal codes for the fictitious country of
Ootumlia, whose format is always one or two letters, followed by a space,
followed by two numbers. You will have to modify the PostalTest class to
accommodate your new subclass, although you must not modify the PostalCode
class.

2.9 Classes for representing geometric points

In this section we illustrate the use of the mathematical class library in Java. We
also illustrate how a seemingly simple problem can be solved in several rather
different ways. You will have the chance to analyze the advantages and
disadvantages of various alternatives.

The classes described in this section represent points on a 2-dimensional plane.
From mathematics, we know that to represent a point on a plane, you can use x
and y coordinates, which are called Cartesian coordinates. Alternatively, you can
use polar coordinates, represented by a radius (often called rho) and an angle
(often called theta). In the code we have provided, you can interchangeably work
with a given point as Cartesian coordinates or polar coordinates.

58| Chapter 2

Review of object orientation

Figure 2.11

Exercises

E25

E26

PointCP PointCPTest
getX() main()
getY()
getRho()
getTheta()

convertStorageToCartesian()
convertStorageToPolar()
toString()

Classes for representing points using both Cartesian and polar coordinates. Only
the operations are shown

Java already has classes for representing geometric points. Take a few
moments to look at classes Point2D and Point in the Java documentation.

We will call the point class presented here PointCP; its main distinguishing
feature from the built-in Java classes is that it can handle both Cartesian and
polar coordinates. We also provide a class called PointCPTest which, like
PostalTest, simply provides a user interface for testing. The public methods of
both classes are shown in Figure 2.11. The code for these classes can also be
found at the book’s web site (www.lloseng.com).

Class PointCP contains two private instance variables that can either store x
and y, or else rho and theta. No matter which storage format is used, all four
possible parameters can be computed. Users of the class can also call methods
convertStorageToPolar or convertStorageToCartesian in order to explicitly convert
the internal storage of an instance to the alternative format.

The above design of PointCP is certainly not the only possible design. Table 2.1
shows several alternative designs; the above design is Design 1.

Answer the following questions with respect to the above designs of the PointCP
class.

(a) Discuss why it might be useful to allow users of class PointCP (Design 1) to
explicitly change the internal storage format, using convertStorageToCartesian
or convertStorageToPolar.

(b) What might be a potential hidden weakness of these methods? Hint: what
could happen if one is called, then the other, and this process is repeated
numerous times?

(c) Write a short program to test whether the weakness you discussed in part b
is, in fact, real.

Create a table describing the various advantages (pros) and disadvantages
(cons) of each of the five design alternatives. Some of the factors to consider
are: simplicity of code, efficiency when creating instances, efficiency when

Section 2.9 | 59

Classes for representing geometric points

Table 2.1 Alternative designs for the PointCP class

How Cartesian coordinates are How polar coordinates are
computed computed

Design 1: Store one type of ~ Simply returned if Cartesian is Simply returned if polar is the
coordinates using a single pair the storage format, otherwise storage format, otherwise

of instance variables, witha computed computed

flag indicating which type is

stored

Design 2: Store polar Computed on demand, but Simply returned

coordinates only not stored

Design 3: Store Cartesian Simply returned Computed on demand, but not
coordinates only stored

Design 4: Store both types of ~ Simply returned Simply returned

coordinates, using four
instance variables

Design 5: Abstract superclass Depends on the concrete Depends on the concrete class
with designs 2 and 3 as class used used
subclasses

doing computations that require both coordinate systems, and amount of
memory used.

E27 Implement and test Design 5. You will also have to make some small changes to
PointCPTest. Hints: a) Do you still need the variable typeCoord? b) Do still you
need the third argument in the constructor?

E28 Run a performance analysis in which you compare the performance of Design
5, as you implemented it in the previous exercise, with Design 1. Determine the
magnitude of the differences in efficiency, and verify the hypotheses you
developed in E26.

E29 To run a performance analysis, you will have to create a new test class that
randomly generates large numbers of instances of PointCR and performs
operations on them, such as retrieving polar and Cartesian coordinates. You
should then run this test class with the two versions of PointCP — Design 1 and
Design 5.

E30 Summarize your results in a table: the columns of the table would be the two
designs; the rows of the table would be the operations. The values reported in
the table would be the average computation speed. Make sure you explain your
results.

60|

Chapter 2

Review of object orientation

E3l

E32

Study the PointCPTest class. It has a complex pair of loops for obtaining input
from the user.

(a) Discuss whether you think the design is clear, and if not, why not.

(b) Design, but do not yet implement, an alternative to PointCPTest that does not
have the nested loops. What are the drawbacks of this alternative design?

(c) Implement and test your alternative design.
In Design 5 of Table 2.1, we suggested creating an abstract superclass. Another
alternative (we can call it Design 6) would instead involve turning PointCP into

an interface. Different classes corresponding to designs 1 to 4 would implement
this interface.

(a) Design and implement this approach (with two different implementing
classes).

(b) What advantages and disadvantages does this approach have?

2.10 Measuring the quality and complexity of a program

It is very important for engineers to be able to measure properties of the
materials and devices they work with. A civil engineer, for example, needs to
know the load capacity of a beam so that he or she can decide on its required
thickness or support. In software engineering, we work with pure information
as represented in programs, designs and other documents. Our goals of
measurement include: better prediction of the time and effort required for
development, and, as was discussed in Section 1.5, improved control of aspects
of quality such as reliability, usability and maintainability.

A metric is a well-defined method and formula for computing some value of
interest to a software engineer. Below are some of the metrics relevant to the
basic principles of object-oriented programming and design we have discussed
in this chapter. Each metric is useful as a rough indicator of some quality such
as maintainability, or of work involved in development. However, each metric
also has disadvantages, which we will address.

Lines of code: You will often notice people describe the amount of work they
have accomplished in terms of the number of lines of code they have written.
This is a very easy metric to compute and is easy to understand. In large systems,
the term KLOC is used, which means thousands of lines of code. A program with
more lines of code will typically take more time to develop and maintain than a
program with fewer lines of code. Unfortunately, this is not always the case: a
smaller program may be more technically complex than a larger program and
therefore require more development time; also, either program may be better
designed and therefore have fewer defects; finally, a programmer can add
duplicate or unneeded lines to make the system appear bigger than it should be.

Section 2.10 | 61

Measuring the quality and complexity of a program

For these reasons it is considered unfair to judge a programmer’s abilities based
solely on the number of lines of code she or he has developed; it is also not
reasonable to predict future maintenance based exclusively on this metric.

Uncommented lines of code: Sometimes instead of counting all the lines in a
source code file, only the lines containing actual source code statements are
included; blank lines and those with just comments are left out. This can result
in a less biased metric: a programmer could otherwise add extra unneeded
comments or blank lines to make the amount of code appear greater. However,
the other problems with lines of code mentioned above still remain.

Percentage of lines with comments: It is considered a sign of more
maintainable code if it has lots of informative comments - in some systems up
to 50% is desirable for this metric. However, the comments have to be
informative. Also, well-structured code with better choices for variable and
method names can be self-documenting and therefore require fewer comments.

Number of classes: This is often a good indicator of the overall size of a design.
Its main weakness is that the number of classes can be affected significantly by
the quality of the design. Some programmers, particularly when they are used
to procedural programming, will create too few classes that are too complex; on
the other hand, some programmers will create redundant and useless classes.

Number of methods per class: If a class has a very large number of methods it
is often a sign that it is too complex.

Number of public methods per class: Similar to the above, this should be very
small. Too many public methods suggests that methods that ought to be private
are being made public; alternatively, classes may simply be too complex.

Number of public instance
variables per class: Ideally this
should be zero - it is good practice
to make them all as private as

Goals, Questions, Metrics (GQM)

When working with software engineering metrics, the
recommended practice is to first think of your high-level
godls: e.g. “To improve maintainability’. Then you should

think about the questions you can ask of the system or the ~ POssible.
process that will help achieve these goals: e.g. ‘How much
information is provided to the maintainer? or ‘How Number of parameters per

method: A low number is better
here — most methods should take
zZero or one parameter.

complex is the system? Finally you choose or develop
metrics that will answer your questions: e.g. ‘Percent lines
with comments’ can help answer the ‘how much
information?’ question.

Merely computing numbers for metrics without
goals and questions is not considered an efficient way
to work.

Number of lines of code per
method: It is considered better to
have more, but smaller methods. In

62|

Chapter 2

Review of object orientation

Exercises

E33

E34

Chapter 6 we will see a design pattern that directly leads to this.

Depth of the inheritance hierarchy: Very complex inheritance hierarchies can
be quite difficult to maintain. At the same time, having no inheritance at all
limits opportunities for reuse.

Number of overridden methods per class: A number too high here suggests
problems in the design. A subclass is supposed to be a specialization of its
superclass, not something completely different.

Compute values of each of the metrics described above for the following.
Where appropriate, compute values for the entire system, each package, each
individual class, and each method.

(a) The PostalCode system.

(b) The various designs of the PointCP system.

(c) Some other system you have developed.

Analyze your data from the previous exercise. Rank the metrics in the order in
which you think they might:

(a) Act as indicators of the amount of work that would have been required to
develop the code.

(b) Act as indicators of the maintainability of the system.

2.1 Difficulties and risks in programming language choice and OO programming

The following are some of the factors arising from the material in this chapter
that can pose a risk to software engineering projects:

Language evolution and deprecated features. Every programming language
evolves, such that code written for earlier versions will not run or gives warning
messages threatening that it will not run in the future. This has been true for
Java - a list of deprecated classes and methods is available as part of the
standard Java documentation.

Resolution. Pay careful attention to the documentation describing which features
of Java are deprecated.

Efficiency can be a concern in some object-oriented systems. Most
implementations of Java run using a virtual machine. This means that Java
code tends not to be as efficient as code written in a language such as C++.
Java’s exception handling and safety checking also can consume considerable

Section 2.13 | 63

For more information

CPU time. But even object-oriented C++ code can be less efficient than purely
procedural code if it uses dynamic binding extensively and allocates objects
excessively. Some projects have failed because, when complete, the system did
not provide adequate performance.

Resolution. Prototype the system early, especially those parts that involve complex
algorithms, in order to determine whether performance will be satisfactory. Learn
about the different programming strategies that make a Java program run faster.
Consider languages other than Java for number-crunching applications. Profile
the running system to discover places where inefficiencies lie, then selectively
rewrite code to eliminate the worst inefficiencies.

2.12 Summary

In this chapter, we have reviewed the main principles of object orientation.
Object-oriented systems use classes and objects to provide software engineers
with a useful combination of data and procedural abstraction.

Some of the key features of object-oriented systems are that they provide
inheritance hierarchies and polymorphism. It is important to learn to use these
facilities correctly, since abusing them can result in designs that are difficult to
maintain. For example, you should check carefully to ensure that all
generalizations follow the ‘isa’ rule, and you should make sure that all features
present in a superclass also make sense in each subclass.

2.13 For more information

The following are just a few of the many books and web sites that present
information about basic object orientation and Java. Since Java is evolving, and
since new books and web sites about it appear almost weekly, check your favorite
bookstore and search the web for other material.

Books to help you learn Java and OO principles

B C. Thomas Wu, An Introduction to Object Oriented Programming with Java, 3rd
edition, McGraw Hill, 2004. http://www.drcaffeine.com

B Walter Savitch, Java: An Introduction to Computer Science and Programming,
3rd edition, Prentice Hall, 2003

B Ken Arnold, James Gosling and David Holmes, The Java Programming
Language, 3rd edition, Addison-Wesley, 2000. The book by the originators of
Java; for those who already know something about programming. http://
java.sun.com/docs/books/javaprog/

B Bruce Eckel, Thinking in Java, 3rd edition, Prentice Hall, 2002. Online version:
http://www.mindview.net/Books/TI]/

64| Chapter 2

Review of object orientation

B C. S. Horstmann, Core Java, Volumes I and II, 6th edition, Prentice Hall, 2002,
http://www.horstmann.com/corejava.html

Book on programming in general

B . Bentley, Programming Pearls, 2nd edition, Addison-Wesley, 2000, http://
www.cs.bell-labs.com/cm/cs/pearls/

Book on metrics

B N. Fenton, and S. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, 2nd edition, Course Technology, 1998

Web sites about Java

B Sun’s official web site: http://java.sun.com contains a wealth of information,
including official documentation, tutorials and downloads. You will be
particularly interested in The Java Tutorial: http://java.sun.com/docs/books/
tutorial and the Javadoc pages: http://java.sun.com/javadoc

B The Java Lobby: http://www.javalobby.org is an excellent site containing Java
news and products

B JavaWorld, an online magazine about Java: http://www.javaworld.com

Tools to help you develop Java code

We recommend that you use an integrated tool to help you develop Java code.
The following are some popular alternatives:

B Borland JBuilder: Borland Corporation: http://www.borland.com
B CodeWarrior: http://www.metrowerks.com

B The Eclipse open source development environment: http://www.eclipse.org

Project exercises

The following are additional advanced exercises to help you tune up your Java
and programming skills.

E35 Write a package that implements some of the hierarchy of two-dimensional
shapes, discussed earlier in this chapter, including the abstract classes and the
concrete classes Circle and Rectangle. Your main program should construct
some random shapes of the concrete classes, do some transformations on these
shapes, and then print out as much information as possible about the resulting
shape, including perimeter, area, and bounding rectangle. Use the PointCP class
presented earlier where possible. Hints:

B For a circle, the area is 7tr” and the perimeter (i.e. the circumference) is 27mr.

Section 2.13 | 65

For more information

B To compute the bounding rectangle of an object you have to compute its
maximum and minimum points in the x- and y-directions.

M As a challenging bonus, you can try to implement ArbitraryPolygon. Use one of
the collection classes to store the points. To compute the area, you can divide it
into triangles and sum the area of the triangles. The area of a triangle is 0.5 x
base x height. To compute the bounding rectangle you will have to search
through the points to find the maximum and minimum x- and y-coordinates.

B Asanother bonus you can try to implement the class Ellipse. The area is 7t x a x
b where a is the semi-minor axis and b is the semi-major axis. The approximate
perimeter is m(3(a+b)-./(a+3b)(3a+b)). Computing the bounding
rectangle of an ellipse is a challenging problem if the ellipse is rotated.

E36 Compare the performance of ArrayList, Vector and ordinary arrays. You should
do a series of experiments where you do each of the following tests with the
three types of collection, timing the execution of each run. You should run each
case several times on the same computer to obtain stable average timings.

(a) Construct very large collections by putting random integers into each
collection one at a time. The random integers should range in value from
zero to nine. You should make each collection large enough so that the run
takes at least 10 seconds to add the integers in the case of an ArrayList. You
will have to do some initial experiments to find out what is a good size. You
would use the same size of collection for ArrayList, Vector and the array. The
ArraylList and Vector can be created by successively adding items and
allowing them to grow, while the array has to be created at its full size and
then populated with its contents. You could also try to experiment with the
case where you do create the ArrayList and Vector initially with their full size.

(b) Construct very large collections as in (i). Then use iterators to sum the
elements. Subtract the construction time to get a measure of how much
time the iteration takes. Use a for loop for the array, and an Iterator for the
Vector and ArrayList.

(c) Again, construct collections as in (i). Then iterate through the collections
removing all the even numbers. Subtract the construction time to get a
measure of how much time deletion takes. You can only easily do this for
Vector and ArrayList.

(d) Once again, construct collections. Then iterate though them adding an
extra element after every number 9 encountered. Subtract the original
construction time to get an idea of how long adding elements randomly
into collections takes. You can only easily do this for Vector and ArrayList.

Write up the results of your experiments as a formal laboratory report. Present
your data in suitable tables, and draw conclusions from an analysis of the data.
From your conclusions, develop recommendations to designers.

Basing software development on
reusable technology

In the last chapter, we refreshed your knowledge of the object-oriented
paradigm, an important software development technology that can be used to
construct complex software systems. It would be nice, however, if instead of
developing an entire system from scratch, you could simply adapt an existing
system to meet your needs. In other words, reuse is one of the keys to successful
software development. We will start our exploration of the software
development process by looking at a technology called frameworks that
promotes reuse.

In this chapter we will also introduce the client-server architecture, one of the
most widely used ways of structuring software systems. We will then introduce
a framework specifically designed for this book that allows software developers
to rapidly build many different client-server systems.

In this chapter you will learn about the following

M Frameworks, reusable software subsystems that implement important
facilities which many applications can use.

M The client-server architecture, an important way of designing programs in
which the software is divided into two main parts: a client program which
runs on each user’s computer, and a server program with which each user’s
client communicates in order to obtain services.

B A client-server framework written in Java. We will use this as the basis for
many of the exercises presented in the book.

68|

Chapter 3

Basing software development on reusable technology

3.1 Reuse:building on the work and experience of others

Where feasible, software engineers should avoid re-developing software that
others have already developed; in other words, they should try to reuse others’
work.

In order to facilitate reuse, software engineers should also make their designs
reusable. This means designing and documenting software so that it is
understandable and flexible enough be used in a variety of different systems.

The following are some of the types of reuse practiced by software engineers,
in increasing order according to the potential amount of work that can be saved
by the reuse:

Reuse of expertise. Software engineers who have many years of experience
working on projects can often save considerable time when it comes to
developing new systems because they do not need to re-think many issues:
their past experience tells them what needs to be done. If such people write
articles describing their experiences, this can help others to do better
engineering work.

Reuse of standard designs and algorithms. There are thousands of algorithms
and other aspects of designs described in various books, standards documents
and articles. These represent a tremendous wealth for the software designer,
since all he or she needs to do is to implement them if they are appropriate to
the current task.

Reuse of libraries of classes or procedures, or of powerful commands built
into languages and operating systems. Libraries and commands represent
implemented algorithms, data structures and other facilities. Software
developers always do this kind of reuse to some extent since all programming
languages come with some basic libraries. The more powerful the facilities that
come with a programming language, the more powerful and ‘high level’ the
language is. Applications like spreadsheets, word processors and database
programs have built-in languages with commands for such things as sorting,
searching and displaying dialogs. Using these languages, which are often called
fourth-generation languages, is an important form of reuse.

Reuse of frameworks. Frameworks are libraries containing the structure of
entire applications or subsystems. To complete the application or subsystem,
you merely need to fill in certain missing details. A framework can be written
in any programming language and can vary considerably in sophistication and
detail. We will discuss them in more detail in Section 3.3.

Reuse of complete applications. You can take complete applications and add a
small amount of extra software that makes the applications behave in special
ways the client wants. For example, you might take a standard email application
and add a feature that would always update its ‘address book” with data from
the company’s employee and client databases. This type of reuse is often called

Section 3.2 | 69

Incorporating reusability and reuse into software engineering

reuse of commercial off-the-shelf or ~ Newton on reuse
COTS software, and the extra code
written is often called glue code. It is
common to write the glue code using
scripting languages which run using
an interpreter.

Reuse is not a new concept. It was
Isaac Newton who said, If | have seen
further it is by standing on the
shoulders of giants!

The elements reused in the latter three types of reuse are often collectively called
components.

Unfortunately, reuse is not as extensive in software engineering projects as
might be desirable. Some of the reasons for this are outlined in the next section.
In this book, we want to encourage you always to think in terms of reuse when
you develop software. Therefore, as a major part of this chapter, we will present
a reusable framework that will form the basis for many examples and exercises.

Exercises

E37 Search the Internet in order to build a list of sources of information about the
following things which can be reused during software development. Rate each
source on a scale from low to high, where low means the source is very
uninformative (perhaps just offering to sell a product), and high means it
provides a wealth of practical information.

(a) Wisdom and experience about software design (e.g. tips, guidelines etc.).
(b) Written descriptions of standard algorithms.

(c) Class libraries.

(d) Code repositories.

(e) Fourth-generation languages.

(f) Macro packages you can add to spreadsheet or word processor programs.
(g) Frameworks.

(h) Scripting languages used to glue together COTS programs.

E38 Pick a couple of the best sources of information from the last exercise and
discuss how they can help you achieve the reuse objective.

3.2 Incorporating reusability and reuse into software engineering

In order for reuse to occur, software developers must not only reuse existing
good-quality components, but must also contribute to reusable components
that others can use.

70|

Chapter 3

Basing software development on reusable technology

Encouraging reuse: breaking the vicious cycle

Reuse and design for reusability, especially of frameworks, need to be made part
of the culture of software development organizations. In the many organizations
that do not practice reuse, software engineers tend to start design from scratch
for each new application either because there are no reusable components
available to reuse, or because they do not feel confident about reusing whatever
is available.

Developers are often willing to reuse packages of code delivered with a
programming language, but are reluctant to develop new ones, and are
especially reluctant to develop entirely new frameworks.

There are several reasons for this reluctance:

Developing anything reusable is seen as not directly benefiting the current
customer - after all, the current customer only needs one application, so why
take the extra time needed to develop something that will benefit other
applications? This argument often seems particularly convincing when
developers are under extreme deadlines.

If a developer has painstakingly developed a high-quality reusable component,
but management only rewards the efforts of people who create the more visible
‘final product, then that developer will be reluctant to spend time on reusable
components in the future.

Efforts at creating reusable software are often done in a hurry and without
enough attention to quality. People thus lose confidence in the resulting
components, and in the concepts of reuse and reusability.

Therefore many organizations suffer from a vicious circle: developers do not
develop high-quality reusable components, therefore there is nothing good
enough to reuse. Since there is nothing good enough to reuse, software
developers take so much time to develop applications that they lack time to
invest in reusable frameworks or libraries.

This cycle can only be broken if software engineers and their managers
recognize the following points:

The vicious cycle exists, and costs money.

In order to save money in the longer term, some investment in reusable code is
normally justified.

Developers should be explicitly rewarded for developing reusable components.

Attention to quality of reusable components is essential so that potential
reusers have confidence in them.

Developing reusable components will normally simplify the resulting design,
independently of whether reuse actually occurs.

Developing and reusing reusable components improves reliability, and can
foster a sense of confidence in the resulting system.

Section 3.3 | 71

Frameworks: reusable subsystems

The latter three points are worth further discussion.

The quality of a software product is only as good as its lowest-quality reusable
component. It is no wonder then that many developers refuse to reuse
components in which they lack confidence. To combat this, development of
reusable components should be treated just like development of complete
applications. You need to do proper domain and requirements analysis for the
component; to design and document it properly; and to ensure its quality
through testing and inspection. We will discuss these activities later in the book.
In addition, it is important that software engineers be always available to
properly maintain a reusable component. If all of the above are performed, then
the component should be of high quality and hence it is more likely to be reused.

The process of developing reusable components, as part of a larger software
project, can have significant benefits, even if the components are never reused
outside the project. Looking at a problem at a more general level tends to make
it easier to understand: details relevant to only certain specific cases are
discarded, which leads to better abstractions and a simpler structure of the
resulting design. Also, the very process of developing reusable components
separately from their target system reduces the interconnections among parts of
the system, a quality we will call low coupling, and discuss in detail in Chapter
9. This low coupling makes the resulting application easier to understand,
modify and test.

In addition to simplifying design, reusable software tends to be more reliable.
The more places the reusable components are used, the more testing they get.
Also, they will be used in different contexts, thus their weak points are more
likely to be exposed. When developing a new system, you can substantially
increase confidence in it by composing it mostly of components that have
already been thoroughly validated.

Making it possible to find reusable components

Even if reusable components are available, software engineers must be able to
find them easily. An essential activity therefore is to carefully catalog and
document all the reusable components.

This catalog must be easy to search and must be kept up to date. In particular,
it is important to drop or deprecate older components that have been found to
be unreliable or have been superseded by better components. Deprecating a
component means declaring that it should not be used in subsequent designs,
but remains available to support existing designs that incorporate it.

3.3 Frameworks: reusable subsystems

Developing and using frameworks is an excellent way to promote reuse and
reusability.

72

Chapter 3

Basing software development on reusable technology

Definition:

a framework is reusable software that implements a generic solution to a
generalized problem. It provides common facilities applicable to different
application programs.

The key principle behind frameworks is as follows: applications that do
different but related things tend to have similar designs - in particular, the
patterns of interaction among the components tend to be very similar. This can
be true even if the applications are in quite different domains. To develop a
framework, you identify the common design elements and develop software
that implements these design elements in a reusable way.

The key thing that distinguishes a framework from other kinds of software
subsystem is that a framework is intrinsically incomplete. This means that there
are certain classes or methods that are used by the framework, but which are
missing.

The missing parts are often called slots. The application developer fills in these
slots in an application-specific way to adapt the framework to his or her needs.
The more slots that the application developer must fill, the more complex the
framework is to use. At the same time, a framework with many slots tends to be
more flexible and therefore you are more likely to be able to reuse it to create a
wide range of applications across different domains.

Frameworks also usually have hooks: these are like slots, except that they are
places where developers can add optional functionality of different kinds. We
will see examples of hooks and slots in the framework we present later in this
chapter.

Developers using frameworks not only fill slots and hooks, but they also use
the services that the framework provides, i.e. methods that perform useful
functions. The set of services, taken together, is often called the Application
Program Interface, or API.

A framework enables the reuse of both design and code. The user of a
framework not only reuses the overall design envisioned by the framework’s
designer, but also a body of code that implements that design.

The following are some examples of frameworks:

A framework for payroll management. Most businesses have software that
includes a payroll module. The rules and features needed in a payroll system
will differ considerably, depending on the type of business, the local
jurisdiction and other software the company uses. However, basic elements
such as making regular payments, and computing taxes and other deductions,
will always exist. Although it is possible to purchase complete payroll
applications, many businesses are of sufficient complexity that such
applications do not implement all the needed features and rules. Instead of
developing a custom payroll package from scratch, several businesses could
adapt a common framework to their individual needs.

Section 3.3 | 73

Frameworks: reusable subsystems

B A framework for a frequent buyer ‘club’. In order to encourage loyalty,
many companies have a system that awards points to customers based on
the amount they purchase. The details of such systems will differ from
company to company, but they all have a lot in common. A company
implementing a new frequent buyer club would do well to base it on a
framework in order to avoid the cost of developing a system from scratch.
An airline frequent-flier plan could be built using the same framework
since it is merely a special kind of frequent buyer club.

B A framework for course registration. Each institution has its own
academic rules, hence it is difficult to create a commercial application that
can be bought off the shelf to automate student information systems.
However, when software engineers are developing or replacing student
information systems, they could benefit from basing their designs on a
common framework.

B A framework for e-commerce web sites. Most e-commerce web sites are
built on the same general model. There is a list of products to pick from;
when an item is selected it is added to a shopping cart; the site then
prompts for personal information and arranges for secure payment.
Individual web sites will want to have special features to differentiate
themselves in the market. However, developers could save a lot of work if
they had a framework that implemented the above general model.

Frameworks and product lines

A product line (or product family) is a set of products built on a common base
of technology. The various products in the product line have different
features to satisfy different market requirements. Many consumer products
are sold in product lines. For example, a company producing microwave
ovens will likely produce a very basic model that they can sell cheaply, and
successively more expensive models with increasingly sophisticated
features.

The software industry is following the product-line model more and
more. Underlying a software product line is a framework containing the
software technology common to all the products in the line. Each product is
then produced by varying the modules used to fill the hooks and slots; new
product variations can be produced quickly and easily.

For example, the software controlling a line of microwave ovens will be
based on a common framework. Each model in the line will then have
different combinations of software and hardware features. Doing this is far
more economical than designing each model separately.

Product lines are also found in many generic software products: you can
often purchase stripped-down ‘demo’ or ‘lite’ versions of software, as well as
‘pro’ versions with extra features. Sets of software versions each tailored to
specific languages or countries also represent product lines.

74| Chapter 3

Basing software development on reusable technology

Horizontal and vertical frameworks

Figure 3.1

A framework can be horizontal or vertical (Figure 3.1). A horizontal framework
provides general application facilities that a large number of applications can
use. For example, if many applications need to have a ‘preferences’ dialog that
allows users to specify many kinds of options, then a horizontal framework
could be designed that would provide general ‘preferences dialog facilities’ for
many different types of applications.

Services offered
Application by the framework Application

Horizontal framework
Slot Slot Hook Hook

Vertical
framework

[WV WA,) WA
Do

Code to be provided to adapt the framework
to the needs of the application

Horizontal and vertical frameworks showing services (at the top) and fillers of
hooks and slots (at the bottom). One of the hooks is not filled

A vertical framework, often also called an application framework, provides
facilities that will allow easy development of a more specific class of application
programs. The microwave oven, frequent-buyer and course registration
frameworks are vertical in nature, while the e-commerce framework might be a
hybrid - a vertical framework composed of several horizontal frameworks that
perform the sub-functions (such as general secure payment facilities).

A vertical framework will have a more complete implementation, and may
have fewer slots and hooks. An interface in Java can be considered an extreme
example of a horizontal framework: there is no implementation, and all the
specified methods represent slots that must be filled.

An application will typically use only a subset of the framework’s services. For
example, a framework for a rental store could do such things as manage
membership, handle deposits, process rentals and returns, and compute
penalties for late returns. A developer using this framework to build an
application for a video rental store would likely ignore the facilities for handling
deposits, but would take advantage of the membership facilities. When building
a car-rental system, the opposite would be true.

Section 3.3 | 75

Frameworks: reusable subsystems

In Section 3.6, we will be studying a framework for the development of client—
server applications. This is a horizontal framework, since it is usable by a very
large number of applications that require a client-server architecture, but does
not itself provide any functions for the end-user.

Object-oriented frameworks
In the object-oriented paradigm, a framework is composed of a library of
classes. The set of services — the API - offered by the framework is defined by
the set of all public methods of the public classes.

Some of the classes in an object-oriented framework should be abstract. To
use the framework in the context of a new application, the developer creates
concrete classes that extend these abstract classes. The abstract methods in the
abstract classes are the slots that are filled when concrete methods are created in
the concrete subclasses.

Example 3.1 Imagine you are designing a framework that different libraries (of books, not
code) would be able to adapt to meet their needs. What kind of facilities would
you want to provide if you were designing such a framework? In what ways do
libraries differ such that they would need to use a framework rather than a
complete application?

Answer: common facilities a library framework might provide include:

M A user interface providing standard kinds of searches (e.g. by author, title and
subject) and the ability to browse through lists of books and periodicals, or
authors.

M Basic classes representing books, clients, loans etc., along with common
operations that can be done with those classes.

Differentiating features of library systems might include:
B The cataloging scheme (e.g. Dewey Decimal or Library of Congress).

M The kind of information kept about each client and book (e.g. clients may have
different privileges, such as to be able to borrow only certain types of books).

M Rules for types and lengths of loans, putting items on hold, payment of fines
etc.

B The particular types of items that can be borrowed from the library. All
libraries have books, but libraries may contain such specialized items as videos,
maps or rare books that need special treatment.

B Specific data unique to this library such as a specific style of barcodes placed on
books, multilingual support, etc.

M Specific hardware the library possesses, such as particular types of barcode
scanners and checkout machines.

76|

Chapter 3

Basing software development on reusable technology

B The security mechanisms, such as who has authority to do what kind of

Exercises

E39

E40

E4|

E42

operations. Login passwords in a university library might, for example, be
integrated with login passwords for other university systems.

Integration of the system with other systems such as online library resources,
existing databases of books and periodicals, accounting systems (e.g. for fines).

Imagine you are designing a framework for the following classes of
applications. Describe what services you might put in the framework. Answer
this question using a simple list of things the system should be capable of
doing.

(a) A reservation framework. This could be expanded into an application to
reserve anything that needs reserving, e.g. dental appointments, meetings,
tickets at the theater, etc.

(b) A scheduling framework. This could be expanded for scheduling meetings,
trains, classes etc.

(c) A language-processing framework. This could be expanded to process a
programming language, a database query language or a command
language.

(d) An editing framework. This could be expanded to allow editing of text,
spreadsheets, and elements of different kinds of diagrams. Think about
common features of editing tools provide.

For each of the three frameworks in the last exercise, what differentiating
features would software developers need to provide to build specific
applications? What hooks and slots should therefore be available?

List as many types of applications as you can think of that might benefit from
the development of the frameworks in Exercise E39, so as to reduce the work
required to develop similar applications from scratch.

Imagine an airline company asks you to develop the software for its frequent-
flier program. You choose to attack the development of this system by first
developing a framework. You consider two approaches:

(a) Developing and then adapting a vertical framework that provides the
facilities needed by several types of frequent-flier programs.

(b) Developing and then adapting a more horizontal framework that
encompasses any frequent-buyer program such as a hotel priority club, a
book club or a video rental store membership club.

Section 3.4 | 77

The client-server architecture

For each of these two approaches, sketch the resulting framework in terms of: (i)
the services it would have to offer, (ii) the slots that should be present, and (iii)
the hooks that would be useful.

E43 Prepare arguments for both sides of the following debate question: ‘Resolved:
when asked to develop a new frequent-flier system, developing a new frequent-
flier framework would be a waste of time’

3.4 The client—server architecture

Software architecture is the branch of software engineering that deals with how
to organize and connect a set of software modules so that they can work together
with each other. There are many well-known architectures — one of the most
widely used is the client-server architecture. We will use this as the basis for
much of the design work in this book; we will look at other architectures in
Chapter 9.

We present the client-server architecture here since we want to introduce a
client-server framework upon which we will build some example applications.
You will find, in the coming sections, all the details you need to learn in order to
understand how our client-server framework works. Once you understand this
material, you will be able to reuse the framework to build a wide variety of
applications.

A distributed system is a system in which computations are performed by
separate programs, normally running on separate pieces of hardware, that co-
operate to perform the task of the system as a whole. A server is a program that
provides some service for other programs that connect to it using a
communication channel. A client is a program that accesses a server. A client
may access many servers to perform different functions, and a server may be
accessed by many clients simultaneously. A client-server system is a distributed
system involving at least one server and one client. A peer-to-peer system is a
client-server system in which programs can act as both client and server for
each other.

Figure 3.2 illustrates a server program communicating with two client
programs. The vertical lines represent the three programs involved. After
connecting, Client 1 sends a message, receives a reply and disconnects. Client 2
connects while Client 1 is still connected; it simply sends a message and then
disconnects. This diagram is an example of a UML sequence diagram; we will
study such diagrams in more detail in Chapter 8.

In general, the components of a client-server system interact as follows:

B The server starts running.

The server waits for clients to connect. This waiting process is called listening.

M Clients start running and perform various operations, some of which require
connecting to the server to request a service.

78| Chapter 3

Basing software development on reusable technology

Figure 3.2

Server: Client1: Client2:

|

) . |
— listen for connections |
|
|

connect

send message

|
|
|
|
|
|
|
|
|
——

connect

send reply

disconnect

disconnect

stop listening

e send message
i
I
I
I
I
I

T

A server program communicating with two client programs

When a client attempts to connect, the server accepts the connection if it is
willing.

The server waits for messages to arrive from connected clients.

When a message from a client arrives, the server takes some action in response,
then resumes waiting.

Clients and servers continue functioning in this manner until one of them
decides to shut down.

Normally, the action taken by the server includes sending a message back to the
client. Most servers have to be able to handle connections from many clients and
respond to messages from all the connected clients. How this is accomplished
will be described below.

It is possible for the same program to be both a client and a server at the same
time. For example, a database server might connect to another server in order
to obtain additional data. It is also possible for the client and server to be located
on the same computer, and run as separate processes. However, it is quite typical
for them to be located on separate computers, perhaps in different geographical
locations.

Table 3.1 lists some important kinds of systems that use the client-server
architecture.

Comparing the client—server architecture to alternatives

You could also have some mechanism other than client-server communication
for exchanging information. For example, one program could write a file, and
another program could read the file, or else both programs could read and write

Section 3.4
The client-server architecture

|79

Table 3.1 Example client-server systems
System Clients Server
The World Wide Web Browsers that display web Web servers that manage sets
pages and post forms, e.g. of web pages (as well as CGI
Netscape Navigator or programs and servlets), and
Microsoft Internet Explorer ~ send information to browsers
when sent a URL
Email Programs that read and send A post-office program that
email. For example, Microsoft receives email from remote
Outlook, Eudora sites and holds it until an
email-reading client is
activated. The program also
forwards outgoing mail from
the client to other sites
Network file system Programs on any computer A program whose main

Transaction processing system

Remote display system

Communication system

Database system

that access files that happen to
be on other computers

Programs that send specific
requests to perform some kind
of transaction, such as debiting
a bank account or booking an
airline ticket

Programs that want to display
information on the screen.
Many Unix programs are
capable of displaying graphical
output on any computer
running an X-Windows server

A program that allows users to
send a message or maintain a
conversation with users on
another computer

Any application program that
wants to query a database

purpose is to allow clients on
other computers to access files.
Unix NES and Novell NetWare
are examples

A program that centralizes all
the functions of some business
and processes transactions
when they arrive

A program that manages the
screen and allows applications,
perhaps running on other
computers, to display their
output. A Unix X-Windows
server is an important example

A program that routes
messages. It can have features
such as forwarding’ that
people are familiar with from
the telephone network

A database management
system that responds to
requests to query or update the
database

80|

Chapter 3

Basing software development on reusable technology

Exercises

E44

the same database. This could work for some kinds of communication, but
would normally result in more complex and slower programs.

A single program that does everything can also be an alternative to a client-server
system. However, the client-server architecture can have the following advantages:

The computational work can be distributed among different machines.
Designers can choose to centralize some computations on the server and
distribute others to the clients. If everything is done on the server, then a
powerful computer may be needed. On the other hand, if the clients take care
of some computations then the server’s workload will be lighter.

The clients can access the server’s functionality from a distance.

The client and server can be designed separately, therefore they can both be
simpler than a program that does everything. The development work can be
done by independent groups, each only concerned with one part of the system
(plus how the client and server communicate). Since the groups may be able to
work on the client and server in parallel, they may be able to complete the
whole system sooner.

All the data can be kept centrally at the server, thus making it easier to assure its
reliability. For example, it can be easier to ensure that regular backups are made
of a single server’s data, rather than trying to separately back up data saved by
many separate programs.

Conversely, distributing data among many different geographically distributed
clients or servers can mean that if a disaster occurs in one place, the loss of data
is minimized.

The information can be accessed simultaneously by many users. It is possible to

accomplish this using a single large program, but that approach tends to be
more complex.

Competing clients can be written to communicate with the same server, and
vice versa; for example, different web browsers can communicate with the same
web server. This can encourage innovation.

For each of the following systems, discuss under what circumstances it would
be worth making it into a client-server system, as opposed to just creating a
single program that does everything. In the case of a client-server system,
indicate what work could be done by the server, and what by the client. In
answering this question, make your best judgment, using whatever knowledge
you already have about software applications.

(a) A word processor.

(b) A system for doctors to look up patient records when visiting a patient.

Section 3.4 | 81

The client-server architecture

(c) A home alarm system that monitors various sensors such as motion
detectors, smoke detectors and window-opening sensors.

E45 1f you were designing a server for the following classes of applications, list the
kinds of main activities that you might expect the server to do:

(a) A server for an airline reservation system.

(b) A server that contains the master list of toll-free telephone numbers that
different telephone companies will need to access.

(c) A server that forms the center of a building alarm system; clients are
individual controllers for devices around the building.

(d) Your favorite site for buying books on the Internet.

(e) A web-based course registration system.

Capabilities that must be provided when designing a server
A server has the following main activities to perform:

1. The server must initialize itself so that it is able to provide the required service.
For example, a server that handles airline reservations might load data
describing the available flights.

2. It must start listening for clients attempting to connect. Until it starts listening,
any client that attempts to connect will not succeed.

3. It must handle the following types of events originating from clients, which can
occur at any time:

J It accepts connections from clients. This process will normally involve
some form of validation to ensure that the client is allowed to connect.
While a client is connected, the server keeps a record of the connection.

1 It reacts to messages from connected clients. This is the most important
thing the server does. In an airline server a message could be a request to
book a passenger, or a query to find out who is booked. In response to a
message from a client, a server can do many types of things, including
performing computations and obtaining information. Normally the server
will send some information back to the requesting client; it might also send
a message to another client or broadcast messages to many clients at once.

' It handles the disconnection of clients. A client can request disconnection
by sending a message to the server or by simply disconnecting itself; it
might ‘disappear’ if it crashes, or if its network connection goes down;
finally, the server might force a client to disconnect if the client is not
‘behaving’ well.

4. The server may be required to stop listening. This means that it will no longer

82| Chapter 3

Basing software development on reusable technology

Figure 3.3

accept new client connections, but it will continue to serve the currently
connected clients. This may happen when the number of connected clients
becomes too high; in such a situation the server rejects new clients so that it
does not run out of resources such as memory. When it has enough resources
again, it can start listening again. The server may also choose to stop listening
prior to shutting down, allowing the connected clients time to terminate their
work.

. It must cleanly terminate, i.e. shut down, when necessary. Shutting down

cleanly means doing such things as notifying each client before terminating its
connection.

The above main activities of a server are illustrated in Figure 3.3, which is an
example of a UML state diagram. We will examine such diagrams in detail in
Chapter 8; for now, we believe that the diagram is sufficiently self-explanatory.

For the server as a whole: . s ' Waiting '
start listening stop listening
Initializing

terminate C

(Wciﬁng for Connections)

accept connection

-

handle
For each connection: Handling a Connection | disconnection
do/ react to messages

The main activities performed by a typical server

Later on in this chapter, we will see that in order to perform its work
effectively, a server needs to use several concurrent threads.

Capabilities that must be provided when designing a client

A client has the following main activities to perform:

1. Like the server, a client must initialize itself so that it is able to communicate

with the server. For example, it needs to know the network address of the
server.

2. It performs some work, which includes:

J Making a decision to initiate a connection to a server. If connecting to the
server fails, or the server rejects the connection, the client may try again or
may give up.

J Sending messages to the server to request services.

Section 3.4 | 83

The client-server architecture

3. It must handle the following types of events originating from the server, which
can occur at any time:

1 It reacts to messages coming from the server. Often, messages received
from the server alternate with messages sent to the server - in other words,
the messages from the server are replies to the client’s requests. Sometimes,
however, an unanticipated message might arrive from the server; for
example, to announce that some new data is available or that the server is
shutting down.

J It handles the disconnection of the server. This might occur because the
server crashed or the network failed. It might also occur because either
the client or server requested disconnection. The important issue is that the
client knows it is no longer connected and makes decisions accordingly;
one possible action is to attempt to reconnect.

4. It must cleanly terminate. This includes disconnecting from a server if it is still
connected.

The above main activities of a client are illustrated in Figure 3.4, which shows
one possible sequence of activities. Note that the ‘regular’ work of the client may
need to proceed concurrently with the process of responding to events
originating from the server. This is indicated in Figure 3.4 by the horizontal bars
that show execution dividing into two distinct paths. We will consider
concurrency in more depth in the next subsection.

Figure 3.4 is an example of a UML activity diagram; we will discuss these
further in Chapter 8.

initialize

initiate a connnection
to a server

|

respond to events
triggered by the server

interact with the user,
sending messages to the
server as necessary do/ respond to messages

do/ handle server disconnection

[

o

Figure 3.4 The main activities performed by a typical client

Concurrency in client-server systems
Client-server systems are inherently concurrent because the server runs at the
same time as the clients, normally (but not necessarily) on different computers.

84|

Chapter 3

Basing software development on reusable technology

However, there is an added level of concurrency in both the client and server
sides. As mentioned above, the client will normally be doing the following
things concurrently:

Waiting for interactions with the end-user, and responding when interactions
occur.

Waiting for messages coming from the server, and responding when messages
arrive.

These generally have to be implemented using multiple threads of control that
can be concurrently executed. Without this mechanism, when the client is
waiting for one kind of input, it will not be able to respond to the other kind of
input. An exception to this can occur in clients that do not need to interact with
the user in any way.

Similarly, the server should normally have concurrent threads which do the
following:

Waiting for interactions with the user who is in charge of the server, and
responding as necessary. As with the client, some servers can dispense with
user interaction, but most will need a thread to handle basic controlling
commands.

Waiting for clients to try to connect and establishing connections as needed.

For each connected client, waiting for messages coming from that client, and
responding when messages arrive.

Servers thus normally operate with at least two concurrent threads, and in
general n+2 threads where n is the number of connected clients. Figure 3.5
illustrates the various threads executing in a typical client-server system. In this
diagram only one client (client A) is shown communicating with the server;
however, a thread for a second dormant client (client B) is also shown.

Thin- versus fat-client systems

The work of a client-server system can be distributed in several different ways.
In a thin-client system, the client is made as small as possible and most of the
work is done in the server. In the opposite approach, called a fat-client system,
as much work as possible is delegated to the clients. The two approaches are
illustrated in Figure 3.6.

An important advantage of a thin-client system is that it is easy to download
the client program over the network and to launch it. In Java, applets are usually
thin clients because it is desirable for them to download rapidly. An advantage
of fat-client systems is that since more computations are distributed to the
clients, better use is made of available computational resources; the server can
therefore be smaller or can be made to handle more clients.

One of the main considerations in choosing between a fat-client and a thin-
client system is how intensively the system will use the network to communicate

Section 3.4 | 85

The client-server architecture

Client Side (Client A) Server Side
interact wait for wait for wait for) interact with
with user server events connections mcel?;zggs' server user
[Jcreate. _ _ 1] wait for (]]
messages:
connect (create _ | client A
send message
reply to message
display reply
send message
reply to message
display reply
kil client
display disconnect
disconnect X
L] | | L] L]
| | | | |
Figure 3.5 Threads in a client-server system

Light computation .
Heavy computation

simple results
commands for display |
requests results
for services of requests
Heavy computation
Y P Light computation
(a) (b)

Figure 3.6 A thin-client system (a) and a fat-client system (b). The clients are at the top and the
servers are at the bottom

- making the wrong choice can sometimes result in an overloaded network.
Depending on the nature of the system, either a fat-client or a thin-client system
may take the fewest network resources. In some cases, a thin-client system will
need to communicate the least because it generally sends only simple user
requests to the server. On the other hand, a thin client might need to
communicate with the server much more frequently than a fat client and to
download voluminous results of the server’s calculations.

Exercise

E46 1In each of the following systems, list: (i) the work normally performed on the
server side; (ii) the work normally performed on the client side; (iii) the types
of information transmitted in both directions over the network; (iv) whether
the system is thin-client, fat-client or intermediate; (v) what could be done to

86|

Chapter 3

Basing software development on reusable technology

increase or decrease the proportion of work done on the client side; (vi) what
effects such changes would have on the network.

(a) to (e) The systems from Exercise E45.
(f)The world wide web in general (with browsers and web servers).

(g)The email system that you use.

Messages in a client—server system: communications protocols

Example 3.2

The types of messages the client is allowed to send to the server form a language.
The server has to be programmed to understand that language. Similarly,
another language consists of the types of messages the server is allowed to send
to the client.

When a client and a server are communicating, they are in effect having a
conversation using these two languages. As with a human conversation, there
have to be rules to ensure, for example, that the communicating parties take
turns to speak. The rules also describe the sequences of messages that the client
and server must exchange, in order to reach agreement on something or to
accomplish some other task.

The two languages and the rules of the conversation, taken together, are called
the protocol. The design of protocols can be very complex; in simple systems,
such as those discussed in this book, the protocol is merely a list of service
requests and their responses.

Sketch a protocol for a simple program for manipulating files on a remote
computer.

The following illustrates the kinds of messages sent between clients and the
server.

Messages to server Possible replies to client
getFile name fileContent, accessDenied, noSuchFileOrDir, failed
saveFile name content successful, accessDenied, failed

rename oldname newname successful, accessDenied, noSuchFileOrDir, failed

delete name successful, accessDenied, noSuchFileOrDir, failed
listDir filelList, accessDenied, failed

changeDir name successful, accessDenied, noSuchFileOrDir, failed
createDir name successful, accessDenied, failed

The above protocol does not deal with such things as security and logging in;
nor does it suggest how the information would be presented to the user in a
friendly way.

Section 3.5 | 87

Technology needed to build client-server systems

Exercise
E47 Propose a simple protocol for the systems described in question E45.

Tasks of the software engineer when developing a client—server system

When designing a client-server system, the software engineer should make use
of a framework that provides much of the underlying mechanism. We will
describe such a framework later; however, the designer still has four key things
to design:

1. The primary work to be performed by both client and server; i.e. the
computations to be performed, data to be stored, etc.

2. How the work will be distributed - thin client, fat client, or intermediate.

3. The details of the set of messages that will be sent from the client to the server
and vice versa in order to accomplish the main activities, ie. the
communications protocol.

4. What has to happen in the client and server when they start up, handle
connections, send and receive messages, and terminate.

3.5 Technology needed to build client-server systems

In order to build a client-server system you need a computer network as well as
software facilities for sending and receiving messages. There are several
standards for data communication, and most modern programming languages
include suitable data communication packages. This section discusses basic
Internet and Java technology you can use to construct client-server systems.

Some important network concepts

In order to be able to understand how a client and a server communicate with
each other, you must understand a few basic concepts about computer networks.
Many books have been written about networks, but the few details discussed
here will be enough to enable you to understand client-server design.

Since most computers today are connected to the Internet, we will assume
that clients and servers will communicate with each other using the Internet’s
main communications mechanism, TCP/IP.

‘IP’ stands for ‘Internet Protocol’ The main function of IP is to route messages
from one computer to another. Long messages are normally split up into small
pieces which are sent separately and then reassembled at the destination
computer. Since the Internet is a large heterogeneous network of many
computers and other devices, this routing process is quite complex. Luckily,
Internet users rarely need to worry about the complexity.

8 8 Chapter 3
Basing software development on reusable technology

How to find out the IP address and host name of a computer
Using a web browser, you can normally find out the IP address of your computer (and a lot of other
information about your network connection) at privacy.net/analyze/.

In Windows XP you can find the IP address by first opening the ‘Network Connections’
control panel. Then click on the icon for a connection and look in the ‘Details’ tab. You can
also issue the command ‘ipconfig /all’ to obtain very detailed information including your host
name.

On Mac OS X, you can find out the IP address by looking at the “TCP/IP’ tab of the
‘Network Preferences’ panel.

On most varieties of Unix, including Mac OS X, or Linux, you can find out your host name
by issuing the commands hostname or uname -n. You can normally look up the IP address
corresponding to a host name using ypcat hosts | grep <hostname>. In addition, you can look
up the host name corresponding to an IP address using the same command sequence.

On many computers (including both Windows and Mac) you can issue the command
netstat -a -p TCP to determine which ports are in use.

‘TCP’ stands for “Transmission Control Protocol. TCP handles connections
between two computers. A connection lasts for a period of time, during which
the computers can exchange many IP messages. In addition to simply
exchanging data, the computers use TCP to establish the connections, and to
assure each other that the messages they have sent each other have been
satisfactorily received. There is another mechanism called UDP that can be used
instead of TCP; however, we will not discuss UDP here.

Each computer using IP is called a host and has a unique address. In IP
Version 4, you may see this address written as four numbers (each from 0 to
255), separated by dots, such as 128.37.100.100; in IP version 6, to which many
networks are moving, the address appears as eight hexadecimal numbers
separated by colons. More commonly, however, you will see an IP address as a
more human-understandable dot-separated series of words such as
‘www.mcgraw-hill.com’. The numeric and word forms can be used
interchangeably. The numeric form is normally called the IP address, while the
word form is normally called the host name. If you strip off the first component
of the host name (everything up to and including the first dot) then the
remaining part typically represents a sub-network on which the host is running;
this is often called a domain. In the above example, ‘mcgraw-hill.com’ is a
domain. The ‘comn’ is a top-level domain.

Several servers can run on the same host. Each server is identified by a port
number, which is an integer from 0 to 65535. In order to initiate communication
with a server, a client must know both the host name and the port number. By
convention, port numbers from 0 to 1023 are reserved for use by specific types
of servers; for example, web servers normally use port 80. Knowing this
convention, a web browser that is only given a host name (in a URL) can connect
to a web server by assuming that the server is at port 80. We therefore should not

Section 3.5 | 89

Technology needed to build client-server systems

use port 80 for any other kind of server since confusion will result. In this book,
we will by default run servers on port 5555 if it is not already occupied by some
other server. In general, when you create a new server, you must pick a port
number and publish both the host name and port number so that clients know
where to connect. Taken together, the host name and port number are often just
called the address of the server. By convention, if a client wants to talk to a server
on the same computer, it can use the special host name localhost (IP address
127.0.0.1).

Establishing a connection in Java

Java includes a package specially designed to permit the creation of a TCP/IP
connection between two applications: it is called java.net. The class Socket is the
central element of this package; instances of this class encapsulate information
concerning each connection. Both the client and the server must have an
instance of Socket in order to exchange information.

Before a connection can be established, the server must start listening to one
of the ports. To do this, it uses the resources of the class ServerSocket. This is
typically done as follows:

ServerSocket serverSocket = new ServerSocket (port);

where port is the integer representing the port number on which the server
should be listening.

In order for a client to connect to a server, it uses a statement like the
following, passing the host name (or numeric IP address) and port number of
the server:

Socket clientSocket = new Socket (host, port);

For the connection to be accepted, the server must have a thread constantly
listening for connections using a statement like the following, embedded in a
loop:

Socket clientSocket = serverSocket.accept();

The above statement will wait indefinitely in the accept method until a client
tries to connect, then it will try to create an instance of Socket to handle the new
connection. If this is successful, both client and server now have instances of
Socket and can communicate freely with each other.

All of the above assumes the network is working properly, and appropriate
values are specified for host and port. If communication fails for any reason,
these statements will throw an I0Exception. Appropriate code must be written to
handle such exceptions, e.g. notifying the user of the failure or trying again.

Once a connection is established, the exchange of communication may
commence. From now on, both client and server can send messages to each
other at any time. The connection is said to be symmetric, meaning that the
client communicates with the server in the same way as the server
communicates with the client.

90|

Chapter 3

Basing software development on reusable technology

Normally there will be two distinct streams of information: from server to
client and from client to server. Each program uses an instance of InputStream
to receive messages from the other program, and an instance of OutputStream to
send messages to the other program. These classes are found in the package
java.io, and their instances can be created as follows:

output = clientSocket.getOutputStream();
input = clientSocket.getInputStream();

When a message is sent from one program using its OutputStream, it may be
read by the other connected program using its InputStream. However, InputStream
and OutputStream deal with messages composed merely of bytes, the most
primitive form of data. Programmers often want to exchange more
sophisticated types of data without having to worry about how to translate them
into a byte stream. To do this, Java provides a series of filters which convert the
raw bytes into other forms. For example, DataOutputStream and DataInputStream
allow direct transmission of the Java primitive types such as int and double.
Another pair of filters, ObjectOutputStream and ObjectInputStream, allows the
exchange of Java objects. For maximum flexibility, we will use this latter pair of
classes in our client-server framework.

To send an object, Java uses a process called serialization. This is a technique
by which every object is converted by an ObjectOutputStream into a binary form
for transmission, and then reconstructed when it is received by an
ObjectInputStream. Most objects can be serialized; the only requirements are that
they be instances of classes that implement the interface java.io.Serializable,
and that the data in their instance variables also be serializable. Serialization is
also the mechanism used to save objects into a binary file.

In order to use an object stream, you must wrap it around a binary stream in
the following manner:

output = new ObjectOutputStream(clientSocket.getOutputStream());
You can then send an object thus:
output.writeObject (msg);
In order to receive objects, you create an object input stream thus:
input = new ObjectInputStream(clientSocket.getInputStream());
and then arrange for the following statement to be executed in a loop:
msg = input.readObject();

The readobject method will wait until an object is received over the socket, or
until an I/O error occurs. An I/O error will occur if the program at the other end
of the connection is terminated.

Section 3.6 | 91
The Object Client-Server Framework (OCSF)

3.6 The Object Client—Server Framework (OCSF)

Figure 3.7

In the next few sections we present a framework that can be used to develop any
client-server system. We call this framework OCSF (Object Client-Server
Framework) since it can be used to build a client-server system that exchanges
Java objects. We will use the OCSF for the systems we develop in this book. In
Chapter 6 we will extend the framework to make it more flexible.

You should attempt to understand completely how the OCSF functions. Not
only will doing so ensure you understand the principles of frameworks and
client-server systems in general, but it will also teach you about some of the
subtleties of software design. Later in the book, some of the design issues raised
here will be revisited.

To help you understand the framework, we provide a simple application in
Section 3.9 that uses it. We also provide some project exercises where you
change the application — modifying an existing application is one of the best
ways to learn how it works.

The core of OCSF consists of three classes: one to implement the client and
two to implement the server. The core classes are illustrated in Figure 3.7, along
with their most important methods. The line with the asterisk connecting
AbstractServer to ConnectionToClient indicates that there are many instances of
ConnectionToClient associated with the server. The labels such as «control»,
«hook» and «slot» divide the methods into categories, which we will describe
shortly.

In Chapter 6, we will discuss some additional classes that extend OCSF; there
is no need to know anything about those to start working with OCSEF.

AbstractClient AbstractServer ConnectionToClient
«control» «control» | «| sendToClient()
openConnection() listen() close()
sendToServer() stoplListening() getlnetAddress()
closeConnection() close() setlnfo()
«hook» sendToAllClients() getlnfo()
connectionEstablished() «hook»
connectionClosed|() serverStarted()
connectionException() clientConnected()
«slot» clientDisconnected|()
handleMessagefromServer() clientException()
«accessor» s.erve.rStopped!)
isConnected|) listeningException()
getPort() serverClosed()
setPort() «slot»
getHost() handleMessageFromClient()
setHost() «accessor»
getlnetAddress|() isListening()

getNumberOfClients()
getClientConnections()
getPort()

setPort()

setBacklog()

The essentials of the core OCSF classes

92|

Chapter 3

Basing software development on reusable technology

Programmers using OCSF never modify the framework’ classes. Instead, a
programmer should do the following to create an application:

B Create subclasses of the abstract classes in the framework.

M In these subclasses, write implementations of certain slot methods that are

declared to be abstract in the framework classes.

Also in the subclasses, override certain methods that are explicitly designed to
be overridden. These are the hooks of the framework.

In various parts of the application, call public methods that are provided by the
framework. These public methods, which are the services of the framework,
allow the application designer to control the client or server, and to find out
information about them.

We will first discuss in detail the client side of the framework, and then the
server side. In this chapter, your main objective should be to understand how to
use the framework. To do that, you will have to understand how it works to some
extent; however, you will probably obtain a more detailed understanding of that
in later chapters.

Complete source code of the OCSF is found at www.lloseng.com.

3.7 Basic description of OCSF — client side

The client side of the OCSF consists of a single class AbstractClient. This is an
abstract class that provides all of the facilities needed to connect and exchange
objects with servers — with one exception: AbstractClient must be subclassed in
order to implement the method handleMessageFromServer that takes appropriate
action when a message is received from a server.

AbstractClient implements the Runnable interface. This is because we want the
message waiting activity of its instance to run as a separate thread as described
earlier. As an implementer of Runnable, AbstractClient has a run method which
contains a loop that executes for the lifetime of the thread, receiving messages
from the server and responding to them. We will discuss the internals of the run
method a bit later.

The public interface of AbstractClient

The public interface to AbstractClient consists of the service methods that
software developers who are using the class can access. In OCSE, as in other
well-designed object-oriented systems, the public interface only provides a set
of methods that can be called - it does not permit direct access to any variables.

The public interface of AbstractClient consists of three kinds of methods: a
constructor, some methods that are used to control the client, and some methods
used to access basic information about the client.

Section 3.7 | 93

Basic description of OCSF - client side

Public constructor. There is only one simple constructor in this class. It merely
initializes variables representing the host and the port of the server to which the
client will connect.

Public controlling methods. These methods provide services and do the bulk
of the work of controlling the client. They are declared final so that they cannot
be overridden by subclasses. The final declaration ensures that subclasses
cannot create versions that contain bugs; however, it also means that subclasses
cannot correct any design flaws in these methods. That puts a particularly
strong responsibility for quality control into the hands of the framework’s
designers. The three key controlling methods are:

M openConnection: this connects, if it can, to a server at the host and port specified
in the constructor (or subsequently using setHost and setPort described below).
As soon as the connection to the server is established, this method starts the
thread which will then run until the connection to the server is terminated.

M sendToServer: this sends a message to the server, if it can. The message can be
any object.

M closeConnection: this stops the communication with the server and signals the
thread to stop looping and hence terminate

All three of the above methods will throw an I0Exception if they fail — callers have
to handle this in some way.

Utility accessing methods. These additional service methods are used to
inquire about the state of the client or make minor changes to that state. They
include:

B isConnected: allows callers to inquire whether the client is currently connected
to a server.

B getHostPort and getPort: allow callers to inquire which host and port the client
is connected to, or is prepared to connect to.

M SetHost and SetPort: allow callers to change the host and port of a
disconnected client in preparation for the next call to openConnection.

B getInetAddress: provides some detailed information about the connection.

The callback methods of AbstractClient

In addition to the public interface, AbstractClient also contains several hook
methods that are designed to be overridden by subclasses of the client, as well as
one abstract slot method. The hooks and slots are called when particular events
occur as the client operates. Methods like these are conventionally referred to as
callbacks, since they are not called by the application code, but rather they
represent calls back to the application code from methods in the framework.

94|

Chapter 3

Basing software development on reusable technology

Methods that may be overridden by subclasses (hooks). These may be
overridden by subclasses and are called when various potentially ‘interesting’
events happen. If developers of subclasses of AbstractClient are interested in
taking some action when these events occur, the developers can implement the
methods. The default implementations do nothing.

connectionEstablished: is called after a connection with a server is established.

connectionClosed: is called whenever a connection with the server is terminated
by the client.

connectionException: is called when something goes wrong with the
connection, such as when the connection is terminated by the server.

Method that must be defined in subclasses (slot). The only abstract slot method
in AbstractClient is named handleMessageFromServer. This must be defined in
subclasses and is called whenever a message is received from the server.

How an application developer should use AbstractClient

A developer who wants to design a client which uses the AbstractClient class
need only do the following:

Create a subclass of AbstractClient.

In this subclass, implement the handleMessageFromServer slot method to do
something useful with any messages coming from the server.

Arrange for some code somewhere to create an instance of the new subclass of
AbstractClient and to call openConnection.

In almost all clients, the developer will also want to do the following:

Arrange for some code somewhere to send messages to the server using the
sendToServer service method. It is possible to have a client that only receives
messages from a server, and hence does not call sendToServer, but that would be
rather unusual.

Implement the connectionClosed callback to do something intelligent, such as
notifying the user, when the connection to the server is terminated normally.

Implement the connnectionException callback to deal with abnormal
disconnection.

Not every application will need to use the other service methods, or override the
other callback method (connectionEstablished).

A few details of the private internals of AbstractClient

Software developers do not, strictly speaking, need to know much more than the
above to use AbstractClient. However, knowing a few details of how a class works

Section 3.8 | 95

Basic description of OCSF - server side

can help a developer to diagnose problems and feel more comfortable using the
class.
AbstractClient has the following instance variables:

B A Socket, clientSocket, which keeps all the information about the connection to
the server.

B Two streams, an ObjectOutputStream (output) and an ObjectInputStream (input),
that are used to transmit and receive objects using clientSocket.

B A Thread, clientReader, that runs using AbstractClient’s run method.

M A boolean variable, readyToStop, used to signal when the thread should stop
executing.

B Two variables storing the host and port of the server.

The thread starts running when openConnection calls start which in turn calls run.
The loop inside run repeatedly waits for a message to come from the server by
calling the readobject method of the ObjectInputStream. When a message is
received, the run method then responds by calling the applications
implementation of handleMessageFromServer.

Complete source code for AbstractClient is found on the book’s web site. You
may find it useful to study the code, following the above explanation. We suggest
you do the exercises at the end of the chapter to test your understanding.

3.8 Basic description of OCSF — server side

The server side of OCSF is slightly more complex than the client side since it has
two classes, not one. The two classes are needed because, as discussed in Section
3.4, the server has to implement both the thread that listens for new connections
(AbstractServer) and the threads that handle the connections to clients
(ConnectionToClient).

The public interface of AbstractServer
As with AbstractClient, there is a limited set of public methods (the API) that
provide all the services of this side of the framework.

The public constructor. AbstractServer has only one constructor, which takes a
port number on which the server will listen. The port number can be changed
later, if needed.

The public controlling methods. Similarly to the client side, the AbstractServer
has a set of methods that can be used by subclasses to perform useful functions.

M listen: this creates the serverSocket that will listen on the port that was
specified in the constructor or by using setPort. It also starts this instance as a
thread that will, in the run method, repeatedly wait for new clients to connect.

9|

Chapter 3

Basing software development on reusable technology

B stopListening: this method signals to the run method controlling the thread to

stop looping, and therefore terminate. No new clients will be accepted until the
listen method is called again. Any connected clients can still communicate
with the server because their connections are controlled by separate threads.

close: this does the same thing as stopListening, but goes further: it
disconnects all connected clients and closes the server socket.

sendToAllClients: this attempts to send a message to all clients.
The methods listen and close can throw an IOException.

Utility accessing methods. These inquire about the state of the server or make
modifications to that state.

isListening: determines if the server is listening for new clients.

getNumberOfClients: returns a count of the number of currently connected
clients.

getClientConnections: returns an array of instances of ConnectionToClient (the
array is declared as an array of Thread, but ConnectionToClient is a subclass of
Thread, so that you can cast the elements of the array to ConnectionToClient). You
can use this method to write services that do something with all clients, such as
searching for clients that have a particular property. This is one of the most
important service methods available to the developer of concrete subclasses.

getPort: finds out what port the server is listening on.

setPort: instructs the server to listen on the specified port next time listen is
called; it does not change the port on which the server is currently listening.

setBacklog: sets the size of the queue length. If a client attempts to connect
when this queue is full, the connection is refused. The queue can get full if large
numbers of clients try to connect, and the server cannot accept them fast
enough.

The callback methods of AbstractServer

These five methods are all called when important events occur.

Methods that may be overridden by subclasses. These may be overridden by
subclasses and are called when events occur that may be interesting to concrete
subclasses:

M serverStarted: called whenever the server starts accepting connections.

B clientConnected: called whenever a new client connects; it provides the

instance of ConnectionToClient (described below) as an argument.

Section 3.8 | 97

Basic description of OCSF - server side

B clientDisconnected: called whenever the server disconnects a client using a call
to the close method of ConnectionToClient. It provides the instance of
ConnectionToClient as an argument.

B clientException: called whenever a client disconnects itself, or is disconnected
as a result of a network failure.

B serverStopped: called whenever the server stops accepting connections as a
result of a call to stopListening.

M listeningException: called whenever the server stops accepting connections
due to some failure.

B serverClosed: called when the server closes down.

In the same way that the client had only one abstract method, the server has only
one abstract method called handleMessageFromClient. This single slot method is
the most important piece of code that a developer of a concrete subclass will
write. When called by the framework, it provides as arguments the message
received as well as the instance of ConnectionToClient corresponding to the client
that sent the message.

The public interface of ConnectionToClient

For the period of time during which each client is connected, an instance of
ConnectionToClient exists for that client. The currently existing instances of this
class can be accessed using getClientConnections, as described above, as well as
several of AbstractServer’s callback methods. You use such objects to find out
information about clients and to communicate with clients.

ConnectionToClient is a concrete class. Users of the framework can simply use
its facilities — they do not have to subclass it. It provides five service methods that
can be used by developers of concrete subclasses of AbstractServer. The first two
of these can throw an IOException.

sendToClient: the central method that is used to communicate with the client.
close: causes the client to be disconnected.

getInetAddress: obtains the Internet address of the client connection.

setInfo: allows arbitrary information to be saved about this client. For
example, the concrete server could give certain clients special privileges, which
would be recorded using this method. More simply, this method could be used
to record the client’s user id.

M getInfo: allows the retrieval of any information that had been saved using
setInfo.

98

Chapter 3

Basing software development on reusable technology

How an application developer should use AbstractServer and ConnectionToClient

A developer who wants to create a server using OCSF needs to perform the
following activities, which are almost identical to what a developer of a client
needs to do:

Create a subclass of AbstractServer.

In this subclass, implement the slot method handleMessageFromClient to do
something useful with any messages coming from the client.

Arrange for some code somewhere to create an instance of the new subclass of
AbstractServer and to call the listen method.

In almost all servers, the developer will also want to do the following:

Arrange for code somewhere to send messages to clients, using the
getClientConnections and sendToClient service methods. For a simple server, it
might be possible to use sendToAl1Clients instead.

Implement one or more of the other callback methods to respond in intelligent
ways to various events.

A few details of the private internals of AbstractServer and ConnectionToClient

You can design a server knowing only the above information; however, the
following are a few of the internal details of the server side of OCSE These
details will help you form a better understanding of how it works.

The setInfo and getInfo methods make use of a Java class called HashMap. A
HashMap can store an arbitrary object using some other arbitrary object as a key.
The key can then be later used to retrieve the stored object.

Many of the methods in the server side of OCSF are synchronized.
Synchronizing a method ensures that no other thread can access the object
while it is running. Since there are many ConnectionToClient threads that could
all make concurrent changes to the data maintained by the server,
synchronization guarantees that critical operations are performed one at a
time, ensuring the integrity of the data.

The collection of instances of ConnectionToClient maintained by AbstractServer
is stored using a special Java class called ThreadGroup. This class takes care of
automatically removing elements when a thread terminates.

The server must regularly take a temporary pause from listening to see if the
stopListening method has been called; if not, then it resumes listening
immediately. A design alternative would be to have the stopListening method
force the listening thread to terminate; however, that would leave the
ServerSocket in an unstable state. The method setTimeout can be used to set the
interval between server pauses; it defines the maximum time that the server

Section 3.9 | 99
An instant messaging application using the OCSF

will take to stop the listening thread. The default value of 500 ms is suitable for
most applications.

3.9 Aninstant messaging application using the OCSF

To illustrate the use of OCSE we present here a simple client-server instant
messaging system. We call this SimpleChat, and its source code can be found on
the book’s web site. The version presented here is Phase 1 of SimpleChat.
Various project exercises found at the end of this and subsequent chapters ask
you to add features to SimpleChat.

The server side of SimpleChat is particularly simple. All the server does is
echo messages coming from clients to all the connected clients; thus the class is
called EchoServer. EchoServer itself has no user interface; once started its process
must be killed or it will run indefinitely.

As Figure 3.8 shows, EchoServer is simply a subclass of AbstractServer. The main
method creates a new instance and starts listening for server connections by
calling listen. To provide feedback, all the callback methods simply print out
messages to the user’s console. The main methods are underlined since they are

static.
«interface» AbstractClient AbstractServer
ChatlF .
dlSpIOy{) clientUl % Z%
4 ChatClient EchoServer
ClientConsole handleMessageFromServer() handleMessageFromClient()
client handleMessageFromClientUI() serverStarted()
a'ccept() 1 quit() serverStopped|)
display() main()
main()

Figure 3.8 Extending the OCSF framework to build the SimpleChat application

The handleMessageFromClient method does one more thing: it calls
sendToAllClients in order to echo any messages. The following is the code for
handleMessageFromClient.

public void handleMessageFromClient (
Object msg, ConnectionToClient client)
{
System.out.println
("Message received: " + msg + " from " + client);
this.sendToAllClients (msg);
}

On the client side, ChatClient is a subclass of AbstractClient that overrides one
method, handleMessageFromServer. This method does nothing but arrange for

100 Chapter 3

Basing software development on reusable technology

messages to be displayed to the end-user, as discussed below. ChatClient also has
two other methods that are called by the user interface.

The user interface of the client is carefully separated from the functional part
of the client. A Java interface, ChatIF, is provided that specifies that any user
interface must implement a single method, display. One class called
ClientConsole implements this interface; some other class could be substituted in
place of ClientConsole. For example, on the book’s web site you will find a class
called ClientGUI. This substitute class simply has to implement the display
operation to work properly with ChatClient.

When the client starts, the main method in ClientConsole runs. This creates
instances of ClientConsole and ChatClient (which runs as a second thread), and
then calls a method called accept to await user input. The accept method runs in
a loop until the program is terminated; it sends all input to the instance of
ChatClient by calling its handleMessageFromClientUI. This in turn calls sendToServer.
The code for handleMessageFromClientUI is written as follows:

public void handleMessageFromClientUI (String message)

{

try

{
sendToServer (message) ;

}

catch(IOException e)

{
clientUI.display

("Could not send message to server. Terminating client.");

quit();

}

Communication coming from the server works as follows. The framework
triggers a call to handleMessageFromServer. This in turn calls the display operation
of ChatIF, which results in a call to the display method in the user interface class
ClientConsole. The code for handleMessageFromServer is as follows.

public void handleMessageFromServer (Object msg)

{
clientUI.display(msg.toString());

In the exercises at the end of the chapter, you will make some changes to Phase
1 of SimpleChat. In subsequent chapters, you will have the chance to make many
other improvements and additions to its design. If you follow all the exercises,
you will end up being able to transmit drawings in real time with the program.

Section 3.10 | 101

Difficulties and risks when considering reusable technology and client-server systems

3.10 Difficulties and risks when considering reusable technology and client—server systems

Software development organizations should design software that is reusable,
and should reuse software whenever possible. In both cases, the goal is to reduce
the large cost associated with developing the same thing over and over again.
One important approach is to actively look for opportunities in any
development project to design a framework instead of designing an entire
application.

Unfortunately, there are some important risks involved in both reuse and
reusability. Software engineers should always consider these issues as part of the
risk management process we discussed in Chapter 1.

Risks when reusing technology

M Poor quality reusable components. You have to trust that the technology
works properly, and that any problems will be fixed. Unfortunately, the
designer of the reusable software might not have followed good software
engineering practices, and you may discover major problems. The designer
may not have the time to fix the technology, or the technology may be so poor
that fixing it adds new problems.

Resolution. Ensure the developers of the reusable technology follow good software
engineering practices and are willing to provide active support.

B Compatibility or availability not maintained. Later versions of the
technology might be changed in ways that are incompatible with how you have
used it. Alternatively, the producer of the technology might go out of business
or withdraw it from the market. You may therefore be forced to abandon the
technology or modify your applications to stay compatible.

Resolution. Avoid the use of obscure features of technology. Only reuse technology
that others are also reusing. Mandate that reuse should be the rule, but allow
exceptions in cases where developers can provide a clear justification.

Risks when developing reusable technology

M Risk from an uncertain investment. Developing reusable technology takes
time away from developing applications and is therefore a calculated risk.
Resolution. To ensure the investment pays off, carefully plan the development of
the reusable technology, in the same manner as if it were a product for a client.
Monitor the success or failure of the reusable software so that you can improve
your investment decisions in future projects.

B The so-called ‘not invented here syndrome’. A framework developed by one
set of developers might not be used because others fear it might not be
supported.

Resolution. Build confidence in the reusable technology by guaranteeing support,

102

Chapter 3

Basing software development on reusable technology

3.11" Summary

ensuring it is of high quality and responding to the needs of the users. (The users
in this case are the software engineers who adopt the technology.)

Competition. Reusable technology might not end up being used if somebody
else develops competing technology that gains wide acceptance. Being beaten
by the competition is a risk in any business; however, with reusable software the
competitive forces are often not financial in nature. Several groups may
develop similar packages and one may be accepted for reuse merely because its
developers are better known or ‘market’ it better.

Resolution. Ensure the reusable technology is as useful and as high quality as
possible. Advertise the presence and advantages of your reusable software.

Divergence. Several development teams using the same framework may want
to change it in different ways.

Resolution. Ensure that the framework is well tested and reviewed; if it is designed
to be general enough, then it will be less likely to suffer from divergent changes.

Risks inherent in client—server or other distributed systems

B Security. Distributed systems are particularly prone to security violations, due

to the fact that information is transmitted over a network. Communications
can be intercepted, or a denial-of-service attack can be implemented.
Resolution. Recognize that security is a big problem with no perfect solutions.
Incorporate encryption, firewalls and similar protective measures into your
designs.

Need for adaptive maintenance. If clients and servers are developed by
different organizations, then the developers of clients are frequently forced to
upgrade their clients whenever the server is changed.

Resolution. Ensure that all software is forward-compatible and backward-
compatible with other versions of clients and servers. Achieving this requires
designing the client-server protocols to be very general and flexible.

In this chapter we have studied reusable technology, which should be the basis
for most software development projects. When developing software, you can
reuse many kinds of things, ranging from the expertise of people who have
worked on past projects up to complete applications. You should also strive to
make anything you develop as reusable as possible.

An important type of reuse is reuse of frameworks. Frameworks are software
systems that are not immediately usable, but can be quickly extended to build an
application or part of an application, by providing essential details that are
missing.

We studied in depth a client-server framework written in Java. The Object
Client-Server Framework (OCSF) provides all the essential features of any

Section 3.12 | 103

For more information

Network ethics
People who design and work with distributed systems must develop a heightened awareness of
certain ethical issues.

With distributed systems, it is particularly easy to violate people’s privacy. This can be
done by simply gathering data about people as they use network-based programs, or else by
actively intercepting communications. Both these activities should normally be considered
unethical unless people have consented to the release of their private information, are able
to withdraw that consent easily at any time, are able to examine and correct the information
collected about them, and are aware of the method by which the information is collected.

Knowledge of how to develop distributed systems also brings with it knowledge of how
to develop harmful programs such as viruses or Trojan horses, as well as how to ‘hack’ into
systems. Some people take a perverse pride in using such knowledge; however, doing so is
illegal and extremely unethical, no matter whether the knowledge is used for ‘fun’ or
maliciously.

client-server system. On the server side it includes facilities for starting and
stopping the server, maintaining a list of clients, sending messages to clients and
responding to messages received from clients. On the client side, it provides
facilities for connecting and disconnecting from a server, sending messages to
the server, and responding to messages coming from the server.

We showed how it is possible to take this framework and implement only a
few methods in order to create an instant messaging system we call SimpleChat.

3.12 For more information

Reuse

M ReNewsWWW: http://frakes.cs.vt.edu/renews.html The Electronic Software
Reuse and Re-engineering Newsletter on the World Wide Web

M I Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture Process and
Organization for Business Success, Addison-Wesley, 1997

B C. McClure, Software Reuse Techniques: Adding Reuse to the System Development
Process, Prentice-Hall, 1997

Frameworks and product lines

M M. E. Fayad, D. C. Schmidt and R. Johnson, Implementing Application
Frameworks: Object-Oriented Frameworks at Work, Wiley, 1999

B G. Rogers, Framework-Based Software Development in C++, Prentice Hall, 1997

B D. E D’Souza, A. C. Wills, Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach, Addison-Wesley, 1999

104| Chapter 3

Basing software development on reusable technology

B The product line practice initiative: http://www.sei.cmu.edu/plp/

The Internet, networking etc.

B The Living Internet: http://livinginternet.com. This web site gives an excellent

overview about the Internet, including a discussion of IP addresses etc.

B M. Hughes, M. Shoffner and D. Hamner, Java Network Programming: A

Complete Guide to Networking, Streams, and Distributed Computing, 2nd
edition, Manning Publications, 1999. http://nitric.com/jnp/

The client—server architecture

B The Webopedia entry for this topic: http://webopedia.internet.com/TERM/c/

client_server_architecture.html

B The client-server newsgroup news:comp.client-server. http://groups.google.com/

groups?&group=comp.client-server

Project exercises

E48

E49

The following series of exercises should ideally be followed in sequence. After
completion of these exercises you will have built Phase 2 of SimpleChat. A
complete implementation of Phase 2 is available on the book’s web site.

On the book’s web site, you will find a set of ‘test cases’ for Phase 1 of the
SimpleChat program. We will discuss test cases in much more detail in Chapter
10. For now, you can simply see them as a set of instructions that allow you to
verify the functionality of the system. You can also use them to learn about the
system. Pick ten Phase 1 test cases and execute them.

This exercise will help you to become familiar with the internals of OCSF and
Phase 1 of an instant messaging application we call SimpleChat. Modify the
application to provide the following features (Remember: do not modify the
OCSF framework):

Client side:

(a) Currently, if the server shuts down while a client is connected, the client does
not respond, and continues to wait for messages. Modify the client so that it
responds to the shutdown of the server by printing a message saying the
server has shut down, and quitting. Design hint: look at the methods called
connectionClosed and connectionException.

(b) The client currently always uses a default port. Modity the client so that it
obtains the port number from the command line. Design hint: look at the
way it obtains the host name from the command line.

E50

Section 3.12 | 105

For more information

Test that this works by connecting a client to a server using a different
port from the default. If the port is omitted from the command line, then the
default value should still be used.

Server side:

(c) Currently the server ignores situations where clients connect or disconnect.
Modify the server so that it prints out a nice message whenever a client
connects or disconnects. Hint: you will simply have to write code in
EchoServer that overrides certain methods found in AbstractServer - study
the AbstractServer description above to determine which methods you
have to override.

Make further modifications to the SimpleChat application, as follows:

Client side:

(a) Currently, the client simply sends to the server everything the end-user types.
When the server receives these messages, it simply echoes them to all clients.
Add a mechanism so that the user of the client can type commands that
perform special functions. Each command should start with the #” symbol
- in fact, anything that starts with that symbol should be considered a
command.

You should implement commands specified as follows:

(i) #quit causes the client to terminate gracefully. Make sure the
connection to the server is terminated before exiting the program.

(ii) #logoff causes the client to disconnect from the server, but not quit.

(iii) #sethost <host> calls the setHost method in the client. Only allowed if
the client is logged off; displays an error message otherwise.

(iv) #setport <port> calls the setPort method in the client, with the same
constraints as #sethost.

(v) #login causes the client to connect to the server. Only allowed if the
client is not already connected; displays an error message otherwise.

(vi) #gethost displays the current host name.

(vii) #getport displays the current port number.

Server side:

(b) Currently, the server does not allow any user input. Study the way user input
is obtained from the client, using the ClientConsole class, which implements
the ChatIF interface. Create an analogous mechanism on the server side.
Design hint: you will have to add a new class you can call ServerConsole

106| Chapter 3

Basing software development on reusable technology

E5I

that also implements the ChatIF interface. Following your modifications,
the following should be true:

(i) Anything typed on the server’s console by an end-user of the server
should be echoed to the server’s console and to all the clients.

(ii) Any message originating from the end-user of the server should be
prefixed by the string ‘SERVER MSG>.

(c) In a similar manner to the way you implemented commands on the client
side, add a mechanism so that the user of the server can type commands
that perform special functions. You should implement commands specified
as follows:

(i) #quit causes the server to quit gracefully.
(ii) #stop causes the server to stop listening for new clients.

(iii) #close causes the server not only to stop listening for new clients, but
also to disconnect all existing clients.

(iv) #setport <port> calls the setPort method in the server. Only allowed if
the server is closed.

(v) #start causes the server to start listening for new clients. Only valid if
the server is stopped.

(vi) #getport displays the current port number.

Make further modifications to the SimpleChat application, as follows.

In Phase 1, clients are always anonymous. When a message is sent from a
client, it is echoed to all the other clients, but nobody knows who sent it. In this
exercise, you will implement a basic mechanism by which clients have a login
id’ that is known both to the client and the server.

Client side:

(a) Add a new ‘login id’ command line argument to the client. This should be
the first argument, before the host name and port, because the host name
and port are optional in the sense that if they are omitted, defaults are
used. The login id should be mandatory; the client should immediately
quit if it is not provided. Design hint: the login id should be stored in an
instance variable in ChatClient. You might ask the question: why not put
the instance variable in ClientConsole? The reason is to separate the user
interface (how information is displayed and input) from the other aspects
of the system.

(b) Whenever a client connects to a server, it should automatically send the
message ‘#login <loginid>’ (i.e. the string #login with the login id appended
to it) to the server. Note that this use of the ‘4’ is different from what we

E52

Section 3.12 | 107

For more information

have seen so far: the #login is sent to the server; it is not handled by the
client as was the case with #quit, #logoff etc.

Server side:

(c) Arrange for the server to receive the #login <loginid> command from the
client. It should behave according to the following rules:

(i) The #login command should be recognized by the server. Design hint:
modify handleMessageFromClient so that it does more than just echo
messages.

(ii) The login id should be saved, so that the server can always identify the
client. Design hint: use the setInfo method to set the login id and the
getInfo method to retrieve it again later.

(iii) Each message echoed by the server should be prefixed by the login id of
the client that sent the message.

(iv) The #login command should only be allowed as the first command
received after a client connects. If #login is received at any other time,
the server should send an error message back to the client.

(v) If the #login command is not received as the first command, then the
server should send an error message back to the client and terminate
the client’s connection. Hint: use the method called close found in
ConnnectionToClient.

Now that you have completed Phase 2 of SimpleChat, you can execute the test
cases provided in the web site for Phase 2. You should execute all the test cases
that are indicated to apply to Phase 2, along with a sample of test cases that are
marked as relevant only to Phase 1. When testing, use your own server with
somebody else’s client and vice versa. If you have followed the instructions
above consistently, then you should have no trouble doing this.

Developing requirements

In the previous two chapters, you learned about technologies that software
engineers need to master before developing applications. Now, we can start
thinking about the particular problem we wish to solve. We will first put effort
into understanding the background of the problem, a process called domain
analysis. Then we will look at the information you have to gather so that you can
describe the problem and its proposed solution. Finally, we will discuss some
techniques for gathering and analyzing that information.

In this chapter you will learn about the following

4.1

Domain analysis: learning background knowledge so that you can
communicate with users and make more intelligent decisions.

Understanding the customer’s problem and setting the scope for the project.
What exactly is a requirement, as well as the various types of requirements.
Requirements documents and what should be put in them.

How to go about gathering requirements.

How to model users’ tasks using use case diagrams and detailed descriptions
of use cases.

How to review a set of requirements.

Domain analysis

Domain analysis is the process by which a software engineer learns background
information. He or she has to learn sufficient information so as to be able to
understand the problem and make good decisions during requirements analysis
and other stages of the software engineering process. The word ‘domain’ in this
case means the general field of business or technology in which the customers
expect to be using the software.

110

Chapter 4

Developing requirements

Some domains might be very broad, such as ‘airline reservations, ‘medical
diagnosis, and ‘financial analysis. Others are narrower, such as ‘the
manufacturing of paint’ or ‘scheduling meetings. People who work in a domain
and who have a deep knowledge of it (or part of it) are called domain experts.
Many of these people may become customers or users.

To perform domain analysis, you gather information from whatever sources
of information are available: these include the domain experts; any books
about the domain; any existing software and its documentation; and any other
documents you can find. The interviewing, brainstorming and use case
analysis techniques discussed later in this chapter can help with domain
analysis. Object-oriented modeling, discussed in Chapter 5, can also be of
assistance.

As a software engineer, you are not expected to become an expert in the
domain; nevertheless, domain analysis can involve considerable work. The
following benefits will make this work worthwhile:

Faster development. You will be able to communicate with the stakeholders
more effectively, hence you will be able to establish requirements more rapidly.
Having performed domain analysis will help you to focus on the most
important issues.

Better system. Knowing the subtleties of the domain will help ensure that the
solutions you adopt will more effectively solve the customer’s problem. You will
make fewer mistakes, and will know which procedures and standards to follow.
The analysis will give you a global picture of the domain of application; this will
lead to better abstractions and hence improved designs.

Anticipation of extensions. Armed with domain knowledge, you will obtain
insights into emerging trends and you will notice opportunities for future
development. This will allow you to build a more adaptable system.

It is useful to write a summary of the information found during domain analysis.
The process of organizing and writing this summary can help you gain a better
grasp of the knowledge; the resulting document can help educate other software
engineers who join the team later.

We suggest that a domain analysis document should be divided into sections
such as the following:

. Introduction. Name the domain, and give the motivation for performing the

analysis. The motivation normally is that you are preparing to solve a particular
problem by development or extension of a software system.

. Glossary. Describe the meanings of all terms used in the domain that are either

not part of everyday language or else have special meanings. You must master
this terminology if you want to be able to communicate with your customers
and users. The terminology is likely to appear in the user interface of the
software as well as in the documentation. You may be able to refer to an
existing glossary in some other document, rather than writing a new glossary.

Section 4.1 | 111

Domain analysis

The section is best placed at the start of the domain analysis document so that
you can subsequently use the defined terms.

C. General knowledge about the domain. Summarize important facts or rules
that are widely known by the domain experts and which would normally be
learned as part of their education. Such knowledge includes scientific
principles, business processes, analysis techniques, and how any technology
works. This is an excellent place to use diagrams; however, where possible,
point the reader for details to any readily accessible books or other documents.
This general knowledge will help you acquire an understanding of the data you
may have to process and computations you may have to perform.

D. Customers and users. Describe who will or might buy the software, and in
what industrial sectors they operate. Also, describe the other people who work
in the domain, even peripherally. Mention their background and attitude as
well as how they fit into the organization chart, and relate to each other.

E. The environment. Describe the equipment and systems used. The new system
or extensions will have to work in the context of this environment.

F. Tasks and procedures currently performed. Make a list of what the various
people do as they go about their work. It is important to understand both the
procedures people are supposed to follow as well as the shortcuts they tend to
take. If, for example, people are supposed to enter certain information on a
form, but rarely do so, this suggests that the information is not useful. Tasks
listed in this section may be candidates for automation.

G. Competing software. Describe what software is available to assist the users
and customers, including software that is already in use, and software on the
market. Discuss its advantages and disadvantages. This information suggests
ideas for requirements, and highlights mistakes to avoid.

H. Similarities across domains and organizations. Understanding what is
generic versus what is specific will help you to create software that might be
more reusable or more widely marketable. Therefore, determine what
distinguishes this domain and the customer’s organization from others, as well
as what they have in common.

Be careful not to write an excessive amount of detailed information. It is a waste
of effort to duplicate the original source material; your domain analysis should
simply include a brief summary of the information you have found, along with
references that will enable others to find that information.

No serious software project should be undertaken without a sound domain
analysis; a good knowledge of the domain of application considerably increases
your chances of success. Many of the most successful software products have
been developed by people who were actively working in the domain before they
became software developers — such people have a better feel for what is really
needed.

112

Chapter 4

Developing requirements

Example 4.1

Example 4.2

Once software engineers have a good grasp of the domain, they can move on
to requirements analysis, which includes defining the problem to be solved and
what software will be created to solve it. However, domain analysis should never
really end: software engineers have the responsibility to continue improving
their understanding as development proceeds. An extension to the system
added for a subsequent release will often merit a domain analysis of its own sub-
domain.

Outline in one paragraph the information you would need to gather in order to
perform domain analysis for an airline reservation system.

You would attempt to learn as much as possible about such things as how airline
flights are scheduled; how fares are set and structured; and how ticketing and
booking works in the customer’s airline and other airlines. You would study how
the various people in the airline reservation business, including travel agents
and airline employees, do their jobs; what existing reservation systems are
capable of doing and how they work; and what laws, regulations and other rules
govern the industry. You would study the functionality of competing
reservation systems, particularly the many web-based systems currently
available.

Imagine you are performing a domain analysis in order to develop a new and better
telephone response and dispatch system for medical emergencies. The system will be
used by operators and paramedics who respond to calls to the emergency number
911 (in North America) or 999 (in the UK). Summarize the information you would
expect to learn. Structure your answer using the categories of information we
suggest for a domain analysis document.

. Introduction. The domain is ‘Medical Emergency Dispatch. You already know

that the motivation for the domain analysis is to develop a new system that
would improve upon existing systems. You would want to record the qualities
that are valued in such systems; these presumably include accurate guidance to
the paramedics, fast response time, flexibility, and, above all, saving lives.

. Glossary. Much of the special terminology for this domain will be medical in

nature, but there will also be terminology related to communications
equipment, emergency vehicles and rescue equipment.

. General knowledge about the domain. You should obtain statistics about the

calls received and the types of cases handled; this will help you understand the
level of performance the system must achieve. Other examples of information
to learn include: what are the different categories of emergency situations, and
how is each handled? how are addresses described (it is critically important
that no mistake is made when communicating an address to an ambulance
driver)? how do dispatchers decide whether police, fire-fighters or other special
services should also be dispatched?

Section 4.1 | 113

Domain analysis

D. Customers and users. In this domain, everyone, including operators, drivers,
paramedics and doctors in hospitals, has a clearly defined role. You should
understand the knowledge they possess and what they need to learn during the
process of handling an emergency. You might discover that some dispatch workers
are opposed to the introduction of any new software — they might have developed
considerable skill with the existing methods, and fear a new system will render their
skills redundant, or even put them out of a job. Knowing this fact, you can take
actions to address their concerns and thus avoid any political problems.

E. The environment. Study the computers and communications gear currently used.
Your customers may be willing to upgrade generic hardware, but your system will
have to work with specialized hardware that would be too expensive to replace.

F. Tasks and procedures currently performed. The procedures that are currently
used by dispatchers and paramedics will help you decide the functions that you
have to implement. These procedures are normally very well defined so that
they can be followed without any decision-making delay even in a major crisis.
Examples of procedures include: how decisions are made about which
ambulance to dispatch to which address; how dispatchers and ambulance
drivers decide upon a route, especially when traffic is heavy or blocked; how
priorities are established in a disaster, when there are not enough ambulances;
how communications are established among the dispatcher, the paramedics
and doctors in hospitals; and how records of each call are logged. The study of
these procedures will help you identify what aspects can be improved and how
the software will become an asset to your customer. You will also have to learn
about any standards, regulations and laws that may exist, so that the software
can conform to them.

G. Competing software. You might discover that there is widely used and well-
respected emergency management software on the market. You might come to
realize that you have little chance of economically developing something that
would be as good. In such a case, you would propose that your customer buy
the widely used software. On the other hand, you might find that the market is
under-developed, with many opportunities for a product like yours to excel.
With extra effort you might be able to create a generic product, rather than a
custom product, and sell it to many different municipalities.

H. Similarities across domains and organizations. The task of dispatching
ambulances could be generalized as the problem of allocating the closest
resource to a consumer. You might therefore consider developing a generic
framework for this aspect of the problem.

Exercises

E53 Describe as many sources of information as you can think of, that should be
consulted in order to perform a domain analysis for each of the following

114| Chapter 4

Developing requirements

E54

systems (see Appendix C for the descriptions of systems).

(a) The police information system.

(b) The household alarm system.

(c) The GPS automobile navigation system.

(d) The investments system.

(e) The woodworking design system.

Write a short domain analysis for one of the systems listed in Exercise E53
using the format we proposed in this section. Record only the most important
information a software engineer would need to know in order to develop your
chosen system. Gather whatever information you can from several sources. Be

resourceful in your hunt for information! Do not forget to consider including
any general or specific knowledge you might already possess.

42 The starting point for software projects

Figure 4.1

When a development team starts work on a software project, their starting point
can vary considerably. We can distinguish different types of project, based on
whether or not software exists at the outset, and whether or not requirements
exist at the outset. The four broad categories of starting point are illustrated in
Figure 4.1.

Requirements Clients have
must be determined produced requirements
New
development A B
Evolution of C D
existing system

Starting points for software projects

In projects of type A or B, the development team starts to develop new
software from scratch - this is sometimes called green-field development,
alluding to constructing a new building where none existed before. In cases C
and D the team evolves an existing system, a rather more common situation.

In cases A and C, the development team has to determine the requirements
for the software — they either have a bright idea for something that might sell, or
else they are asked to solve a problem and have to work out the best way to solve

Section 4.3 | 115

Defining the problem and the scope

it. In cases B and D, on the other hand, the development team is contracted to
design and implement a very specific set of requirements. In these latter cases,
the customer’s organization has normally done the requirements analysis,
perhaps using in-house software engineers or consultants specializing in
requirements analysis.

Projects where the requirements are pre-specified should be handled
carefully. If the customer has not done a good job of analysis and specification,
the requirements are likely to be poor. For example, the customer may be
proposing a system that is far too large, or that does not address a clear problem
(we will discuss both of these issues later). As a software engineer, you have a
professional responsibility to ensure that the requirements on which you base
your work are of good quality, even when they were developed by others. You
should evaluate such requirements yourself, and work with the customers to
resolve any problems. You should not accept a contract where you are required
to implement requirements with no changes allowed.

In the next few sections, we will largely be assuming that you are working on
a project of type A or C and therefore have to develop your own requirements.
However, the matters we discuss will also be helpful if you are reviewing
requirements produced by others.

4.3 Defining the problem and the scope

Once you have learned enough about the domain, you can begin to determine
the requirements. The first step in this process is to work out an initial definition
of the problem to be solved.

A problem can be expressed as a difficulty the users or customers are facing,
or as an opportunity that will result in some benefit such as improved
productivity or sales. The solution to the problem will normally entail
developing software, although you may decide that it is better to purchase
software or to develop a non-software solution.

You should write the problem as a simple statement. Careful attention to the
problem statement is important since, later on, the requirements will be
evaluated based on the question: ‘are we adequately solving the problem?’

A good problem statement is short and succinct — one or two sentences is best.
For example, if you were developing a new student registration system, you
might express the problem as follows: “The system will allow students to register
for courses, and change their registration, as simply and rapidly as possible. It
will help students achieve their personal goals of obtaining their degree in the
shortest reasonable time while taking courses that they find most interesting
and fulfilling’

If the problem is broad, or contains a long list of sub-problems, then the
system will have a broad scope, and hence be more complex. An important
objective is to narrow the scope by defining a more precise problem. In the

116| Chapter 4

Developing requirements

Figure 4.2

above example, if we had stated: ‘the system will automate all the functions of
the registrar’s office, that leaves open the possibility of including such features
as fee payment, printing class lists and allocating rooms to courses.

One way to set the scope is to list all the sub-problems you might imagine
the system attacking. To narrow the scope, you can then exclude some of these
sub-problems - perhaps they can be left for another project. Figure 4.2
illustrates this.

Initial list of problems Narrowed Scope of
with very broad scope scope another system

N

fee payment

exam scheduling

browsing courses -
room allocation

Narrowing the project’s scope

i

Sometimes, an inappropriate choice of problem statement can result in a
scope that is too narrow or completely wrong. To determine whether this is
the case, think about what will be the user’s ultimate high-level goal when
they use the system, and the customer’s high-level goal for having it
developed.

In the university registration example you could consider a student’s goal to
be ‘completing the registration process. However, you can see that the
student’s higher-level goal might be, ‘obtaining their degree in the shortest
reasonable time while taking courses that they find most interesting and
fulfilling’ This new goal sheds a different light on the problem; you might
consider adding features to the system that would not otherwise have
occurred to you, such as actively proposing courses based on an analysis of the
student’s academic and personal-interest profiles.

All the requirements gathering and analysis techniques described later in
this chapter can help in defining the problem and hence the system’s scope.
Interviewing can give you the stakeholders’ personal perspectives;
brainstorming can generate lists of ideas from which you can extract a suitable
problem or problems; use case analysis can give you a list of the possible things
the system could do; and prototyping can give everybody a better perspective
about what might be possible.

It is a good idea to define the problem and scope as early as possible, before
getting deeper into analysis of the detailed requirements. This prevents you
from working on unnecessary requirements. However, as with domain analysis,
your perspective on the problem will improve as analysis continues, hence the
problem statement may need to be refined several times.

Section 4.3 | 117

Defining the problem and the scope

Example 4.3 Define the problem and scope for a system that handles university degree
requirements and registrations. Then develop a requirements statement from this.

A university registrar’s office handles a large number of functions. Below, we
have listed some of the functions that you might consider building into such a
system.

The initial, overly broad, problem statement might be: ‘to automate all the
functions of the registrar’s office.

You would have extensive discussions with stakeholders, and then agree on a
narrower problem statement such as the following: ‘Helping university
administrators manage lists of courses, degree requirements, registration and
academic results. Helping students choose and register in courses in which they
are interested that will lead to their degree’

You can then determine which functions should be included in the system.
The functions marked with a ‘++ will be included, while those marked with a ‘-
-” will be excluded. Note that there will still have to be systems to handle the
functions marked ‘—-; but these will be left to others to develop, or to a later
project.

—— Fee payments and related accounting and billing
—— Applications for admission

++ Editing and querying the list of available courses, including their
descriptions and lists of prerequisites

++ Editing and querying the requirements for obtaining a degree

++ Editing and querying the list of courses to be taught in a given semester
—— Scheduling the times that courses will be offered

—— Allocating courses or exams to rooms

++ Helping students determine which courses they could take by analyzing
their degree requirements, the courses they have previously taken, their
schedule, and their preferences

++ Registering students
++ Recording marks

++ Printing transcripts

Example 4.4 You are asked to improve a data entry program used to enter a patients personal
information when he or she is first admitted to a hospital. Admission clerks have
to enter each new patient’s name, address, telephone number, and various other
pieces of data. The customer tells you that the admissions clerks make an
unacceptable number of mistakes that contaminate the database and cause
administrative problems. You are told that the problem is lack of clarity in the

118|

Chapter 4

Developing requirements

Example 4.5

Exercises

E55

user interface, which leads the clerks to put information in the wrong places.
What, however, is the real problem and how might understanding this affect
potential solutions?

The stated problem suggests that the solution is to clean up the user interface.
However, the real problem is that many errors are made. Thinking about the real
problem leads us to realize that a better solution might involve completely
eliminating the data entry process, or at least reducing it. Perhaps some or all of
each patient’s information could be obtained from a database (e.g. one
maintained by the government or insurance companies), or by scanning a
patient’s driver’s license or some other document. Another issue to investigate is
whether all the information typed by the clerks is actually needed - if they have
to type less information, then maybe they will be able to spend more time
checking the accuracy of the important information.

This is the inverse of the last example. This time, you are told by the customer
that the problem is, ‘the data-entry system is not “high-tech” enough’. Hence you
are asked to write a system that scans drivers’ licenses and other documents in
order to enter a new patients name and address accurately and quickly. What
mistake could you be making if you accept this problem statement and proceed to
do exactly what the customer asks?

You should never accept a problem statement that merely says the technology
lacks sophistication — simple technology is often perfectly adequate or even
superior. The customers may not realize that software that accurately scans
arbitrary documents and puts the relevant information in the correct fields will
be difficult to write, and hence would be expensive. In fact there is a
considerable risk that the accuracy achieved by this approach might be
inadequate, and that much maintenance would be needed - for example as
document formats change. Once again, you should base your analysis on the
real problem - that clerks make too many errors. You might discover that your
real focus should be on improving the user interface of the existing system.

Define a possible scope for the following systems. First, list a wide range of
things that the system could do. Then narrow down the scope. To do this, select
a minimal set of the most important features that you would implement in the
first release of the system.

(a) A police information system.
(b) A system for real-estate agency.
(c) A system for a public library.

(d) A system for a car-rental agency.

Section 4.5 | 119

Types of requirements

E56 Give precise problem statements for the systems listed in E55. Remember to
think about high-level goals.

44 What is a requirement?

Definition: a requirement is a statement describing either |) an aspect of what the
proposed system must do, or 2) a constraint on the system'’s development. In
either case, it must contribute in some way towards adequately solving the
customer's problem; the set of requirements as a whole represents a
negotiated agreement among all stakeholders.

Let us dissect this definition in order to better understand it:

M A requirement is a statement...: this means that each requirement is a relatively
short and concise piece of information, expressed as a fact. It can be written as
a sentence or can be expressed using some kind of diagram. We will call a
collection of requirements a requirements document.

M ...an aspect of what the proposed system must do...: most requirements say
something about the tasks the system is supposed to accomplish. They do not
describe the domain.

M ...a constraint on the system’s development...: requirements often specify the
quality levels required. They may also specify details such as the programming
language to be used if this is truly important to the customer. They should,
however, avoid discussing incidental aspects of the design.

W ...contribute ... towards adequately solving the customers problem: a
requirement should only be present if it helps solve the customer’s problem - as
we discussed in Chapter 1, this is what software engineering is all about.

B ...a negotiated agreement among all stakeholders...: a statement about the system
should not be declared to be an official requirement until all the stakeholders
(users, customers, developers and their management) have reviewed it, have
negotiated any needed changes, and have agreed that it is valid.

4.5 Types of requirements

Requirements can be divided into four major types: functional, quality, platform
and process. Requirements documents normally include at least the first two

types.

Functional requirements
Functional requirements describe what the system should do; in other words,
they describe the services provided for the users and for other systems. The

120

Chapter 4

Developing requirements

Example 4.6

functional requirements should include 1) everything that a user of the system

would need to know regarding what the system does, and 2) everything that

would concern any other system that has to interface to this system. Details that

go any deeper into how the requirements are implemented should be left out.
The functional requirements can be further categorized as follows:

What inputs the system should accept, and under what conditions. This
includes data and commands both from the users and from other systems.

What outputs the system should produce, and under what conditions. Outputs
can be to the screen or printed. They can also be transmitted to other systems,
such as special I/O devices, clients or servers.

What data the system should store that other systems might use. This is really a
special kind of output that will eventually become an input to other systems.
Data which is stored for the exclusive use of this system (e.g. the specifics of a
file format used to temporarily back up some data) can be ignored until the
design stage.

What computations the system should perform. The computations should be
described at a level that all the readers can understand. For example, you would
describe a sorting process by saying that the result is to be ordered in ascending
sequence according to the account number. You would not normally specify
the particular algorithm to be used.

The timing and synchronization of the above. Not all systems involve timing
and synchronization - this category of functional requirements is of most
importance in hard real-time systems that do such things as control hardware
devices (e.g. telecommunications systems, systems that control power plants or
factories, and systems that run automobiles and airplanes).

An individual requirement often covers more than one of the above categories.
For example, the requirements for a word processor might say, ‘when the user
selects “word count’, the system displays a dialog box listing the number of
characters, words, sentences, lines, paragraphs, pages, and words per sentence
in the current document. This requirement clearly describes input (selecting
‘word count’), output (what is displayed) and computation (counting all the
necessary information, and computing the average words per sentence).

Summarize the functional requirements for an embedded software system that
allows a user to control a microwave oven. The system as a whole consists of:

J A keypad, with the following buttons that deliver an interrupt to the software
when they are pressed: 0 to 9, five power-level buttons (‘hi’, ‘med-hi’, ‘med,
‘med-low’, ‘low’), three temperature buttons (frozen, ‘refrigerated, ‘room
temperature’), and five action buttons (‘AUTO-DEFROST, ‘AUTO-REHEAT’,
‘START’, ‘CANCEL’ and ‘TIME OF DAY’).

Section 4.5 | 121

Types of requirements

J A door sensor that delivers an interrupt to the software when the door is
opened or closed.

A steam sensor that can be queried by the software, and which indicates the
amount of steam being released from the food.

J A digital LCD display on which the system can display output.
A sound generator that the system can use to generate various tones.

. The cooking hardware (microwave emitter, fan and turntable). The software
can run this at the five different power levels, and can turn it off.

The following summarizes the main functional requirements. This is intended
to illustrate the different categories of functional requirements, which we have
marked in italics. It is not a complete requirements document; examples of more
complete documents are found in Sections 4.11 and 4.12. There are a few
deliberate weaknesses in these requirements, which are left for you to find in
later exercises.

. The system can be in the following modes (conditions under which input and
output can occur):

J dle’: this is entered when the system is switched on, when cooking is
complete or when ‘CANCEL’ is pressed. This mode is exited when the system
starts accepting input.

J ‘accepting input’: this is entered if the system was in idle mode and the user
presses any button, except ‘CANCEL” and ‘START. This mode is exited when
the system enters ‘cooking’ mode, the user presses ‘cancel, or the user
completes the process of setting the time of day.

J ‘cooking’: this is entered if the door is closed, while the system is in
‘suspended’ or ‘accepting input’ mode, and the user then presses ‘start’ This
is exited when the user opens the door or presses ‘cancel.

J ‘suspended’: this is entered if the user opens the door while cooking. This
mode is exited when the user presses ‘cancel’; or closes the door and then
presses ‘start’

. The user specifies a valid cooking method in one of the following ways (input):

1 By pressing a sequence of up to five digits indicating minutes and seconds.
The last two digits are the seconds, the previous digits (if any) are the
minutes. The user may optionally then press one of the power-level keys.

J By pressing ‘AUTO-DEFROST followed by an optional sequence of digits
indicating the weight in pounds. If the user omits the weight, then the
default is 1.

J By pressing ‘AUTO-REHEAT followed optionally by one of the temperature
buttons. If the user omits the temperature, then the default is ‘refrigerated.

122

Chapter 4

Developing requirements

10.

11.

. After specifying a cooking method, the user must press ‘START’ to initiate

cooking (input).

. The user sets the time of day by pressing ‘“TIME OF DAY’ followed by four digits

indicating the hours and minutes, followed by “TIME OF DAY again (input).

. When in idle mode, the system displays the time of day using a 12-hour clock,

without any ‘a.m. or ‘p.m. (output).

. Each time the user presses a button, the system generates a tone. If the button is

valid, the tone is high-pitched. If any button is pressed in an invalid sequence
(e.g. the user presses ‘START while the door is open, or presses ‘AUTO-DEFROST
followed by AUTO-REHEAT’) the tone is low-pitched (output and conditions for
the output).

. When the system is in ‘accepting input’ mode, the system indicates on the

display the buttons the user presses (output - in a full document, more details
would be needed).

. When the user specifies ‘AUTO-DEFROST’ cooking, the system computes the

required heating time and power level from the entered weight of the food
(computation - in a full requirements document the formulas used would have to

be specified).

. When the system enters ‘cooking’ mode, the system sends a signal to the

cooking hardware to start cooking at the specified or computed power-level
(output).

If the system is cooking, and ‘AUTO-REHEAT has been specified:

J The system stops cooking when it detects sufficient steam, indicating that
the food is hot (input and output - in a full requirements document more
details of required steam levels would be required).

J The system displays an estimate of the remaining cooking time from the
initial temperature of the food, as specified by the user, and the amount of
steam it detects. The system constantly updates this estimate (computation
and output).

. As a safety measure, if the system has reached its time estimate and has not
detected any increase in steam, then it stops cooking (computation, timing
and output).

When the system is in ‘cooking’ mode and either a simple time-period or
‘AUTO-DEFROST has been specified:

. The system displays the power level and the cooking time remaining
(output).

' The system stops cooking when the time remaining reaches zero (timing
and output).

Section 4.5 | 123

Types of requirements

12. When the system is to stop cooking, it sends a signal to the cooking hardware
to switch it off, and sounds three short high-pitched beeps (output).

Exercise

E57 Using the same format as Example 4.6, describe a set of functional
requirements for systems that would solve the problem statements you devised
in Exercise E56. If you find that a list of functional requirements is getting too
extensive, you may further narrow the problem statement.

Quality requirements
Quality requirements ensure the system possesses quality attributes such as the
five discussed in Chapter 1: usability, efficiency, reliability, maintainability and
reusability. These requirements constrain the design to meet specified levels of
quality.

One of the most important things about quality requirements is to make them
verifiable. By this, we mean that it should be possible, after the system is
implemented, to determine whether they have, in fact, been adhered to. The
verification is normally done by measuring various aspects of the system and
seeing if the measurements conform to the requirements.

The following are some of the main categories of quality requirements,
although this is not an exclusive list.

B Response time. For systems that process a lot of data or use a network
extensively, you should require that the system gives results or feedback to the
user in a certain minimum time. For example, you might write that a result
must be calculated in less than three seconds, or that feedback about the
progress of a search must appear within one second. In Chapter 7, we will
discuss usability guidelines for response time. Remember, however, that for
hard real-time systems, response time requirements should be considered to be
functional - the system would not work unless they are adhered to.

B Throughput. For number-crunching programs that may take hours, or for
servers that continually respond to client requests, it is a good idea to specify
throughput, in terms of computations or transactions per minute.

B Resource usage. For systems that use non-trivial amounts of such resources as
memory and network bandwidth, you should
specify the maximum amount of these
resources that the system will consume. This
allows others to plan hardware upgrades. For
example, you could specify that no more than
50 MB of memory is to be used by the system,
and that the system must consume less than
10% of the CPU’s time when run on a 1.8GHz = W€ haYe t.her'efor'e stopped
machine under a certain operating system. sing|itiin'enisioook:

Non-functional requirements
Quality, platform and process
requirements used to be
collectively called non-functional
requirements. However, that
term has fallen into disfavor and

124

Chapter 4

Developing requirements

B Reliability. Reliability is measured as the average amount of time between

failures or the probability of a failure in a given period. It is a good idea to set
strong but realistic targets for this. For example, you might specify that a
continuously running server must not suffer more than one failure in a six-
month period. It is necessary to define what you mean by a failure: normally it
means much more than just crashes; failures normally include any difficulties
users have getting their work done which are attributable to defects.

Availability. Availability measures the amount of time that a server is running
and available to respond to users. As with reliability, you should set a target for
this. For example, you might specify that a server must be available over 99% of
the time, and that no period of downtime may exceed 1 minute.
Telecommunications systems have very rigorous availability criteria: for
example, you might specify that such a system must not be down more than 10
minutes in its 20-year life-span. This is also often called ‘6-nines’ availability,
since it is equivalent to saying that the system must be up 99.9999% of the time.

Recovery from failure. Requirements in this category constrain the allowed
impact of a failure. They state that if the hardware or software crashes, or the
power fails, then the system will be able to recover within a certain amount of
time, and with a certain minimal loss of data. For example, the requirements
for a word processor might state: ‘the system will allow users to continue their
work after a failure with the loss of no more than 20 words of typing or 20
formatting commands. Note that the detailed procedure for recovery from
failure is a functional requirement.

Allowances for maintainability and enhancement. In order to ensure that the
system can be adapted in the future, you should describe changes that are
anticipated for subsequent releases. This constrains design and improves
quality without adding explicit new functional requirements.

Allowances for reusability. Similarly to the previous category, it is desirable in
many cases to specify that a certain percentage of the system, e.g. 40%,
measured in terms of lines of code, must be designed generically so that it can
be reused. This will help break the reuse vicious cycle discussed in the previous
chapter.

Platform requirements

This type of requirement constrains the environment and technology of the
system:

Computing platform. It is normally important to make it clear what hardware
and operating system the software must be able to work on. Such requirements
specify the least powerful platforms and declare that it must work on anything
more recent or more powerful. For example, you might declare that certain
software must run on any computer operating under Mac OS X version 10.2 or
MS-Windows 98 or higher, with 128 MB of RAM or more, and 100 MB of free

Section 4.5 | 125

Types of requirements

disk space. This is quite different from the resource usage constraint on
memory above: a resource usage constraint specifies that the system will not
use more than a certain amount of resources, whereas a platform constraint
says it is not guaranteed to run if inadequate or incorrect resources are available.

B Technology to be used. While it is wise to give the designers as much flexibility
as possible in choosing how to implement the system, sometimes constraints
must be imposed. Common examples are to specify the programming language
or database system. Such requirements are normally stated to ensure that all
systems in an organization use the same technology - this reduces the need to
train people in different technologies. The company might have also spent
considerable money on a certain technology and wants to get the best value for
that money.

Process requirements
The final type of requirements constrains the project plan and development
methods:

B Development process (methodology) to be used. In order to ensure quality,
some requirements documents specify that certain processes be followed; for
example, particular approaches to testing. The details of the process should not
be included in the requirements; instead a reference should be made to other
documents that describe the process.

B Cost and delivery date. These are important constraints. However, they are
usually not placed in the requirements document, but are found in the contract
for the system or are left to a separate project plan document, which we will
discuss in Chapter 11.

In most cases, the boundaries between the functional requirements and other
requirements types are clear. But sometimes it is unclear in which category a
requirement should fit. For example, if you were designing a word processor you
would likely build in an ‘auto-save’ feature so that, if the computer was turned
off or crashed, very little work would be lost. The question is, is the auto-save
feature a fundamental part of the word processor’s functionality (a functional
requirement), or is it a constraint on quality (a quality requirement)? You would
probably conclude that it is a functional requirement.

Example 4.7 Classify the following aspects of an airline reservation system into F for
functional, Q for quality, PL for platform, PR for process, and X for should not be
a requirement’. Also indicate the subcategory of requirement. For something that
should not be a requirement, explain why not.

B How information about flights, passengers and bookings are entered. F: Input.
B What information appears on tickets and reports. F: Output.

B How fares are calculated. F: Computation.

126

Chapter 4
Developing requirements

Exercises

E58

E59

What information must be stored in the database that travel agents and others
access. F: Data storage.

The system should be designed such that it can be extended to handle a
frequent-flier plan. Q: Allowance for enhancement.

The system must be available at all times. Only 2 minutes’ downtime a week is
to be permitted. Q: Availability.

The system must run on any Linux system. PL: Computing platform.

A merge-sort algorithm must be used to sort the flights by departure time.
X: This is a design issue.

Classify the following requirements statements into F for functional, Q for
quality, PL for platform, PR for process, and X for ‘should not be a requirement.
Justify your answer. If you would need more information to provide the answer
to one of these questions, indicate what else you would need to know.

(a) The system must use 128-bit encryption for all transactions.

(b) If the alarm system is ringing, then the elevators (lifts) will proceed to the
ground floor, open their doors and suspend further operations.

(c) The student information system will provide output from all commands
within one second.

(d) The system will be able to print to an LC-9 plotter.

(e) The system will use an array to hold the invoices.

(f) The system can read images of the following formats: JPEG, GIF, BMP.

(g) The system must use no more than 32 MB of RAM.

(h) The java.util.Date class should be used to handle dates.

(i) The JUnit framework should be used to test the system.

(j) The system must run under both Linux and Windows operating systems.
The following requirements are stated in an unverifiable way. For each, indicate

the kind of requirement it is, and rewrite it so that it is verifiable (make up
some suitable details).

(a) A modern programming language must be used.

(b) A development process will be used that will ensure the system is of high
quality.

(c) The http server will have high availability and throughput.

Section 4.6 | 127

Use cases: describing how the user will use the system

(d) The system must be produced at minimum cost.

(e) The automatic teller machine should be fast.

E60 Write a set of quality and platform requirements for the microwave oven
system of Example 4.6.

E6l Add quality and platform requirements to the systems you worked on in
Exercise E57.

4.6 Use cases: describing how the user will use the system

Use case analysis is a systematic approach to working out what users should be
able to do with the software you are developing. It is one of the key activities in
requirements analysis.

The first step in use case analysis is to determine the types of users or other
systems that will use the facilities of this system. These are called actors. An actor
is a role that a user or some other system plays when interacting with your
system; each actor will need to interact with the system in different ways.

Most of the actors will be users; a given user may be considered as several
different actors if they play different roles from time to time - that is, if they have
different job functions. Other actors will be systems that automatically exchange
information with your system. If you performed domain analysis, you will have
already listed the different types of users

Example 4.8 You are developing a system for managing the processes of a small town public
library. List all the actors for this system.

The actors might include the following: Librarian, Checkout Clerk, Borrower.

The second step in use case analysis is to determine the tasks that each actor will
need to do with the system. Each task is called a use case because it represents
one particular way the system will be used.

Definition: a use case is a typical sequence of actions that an actor performs in order to
complete a given task.

When listing use cases, make sure you respect the system scope, as discussed
in Section 4.3. In other words, only list use cases that actors will need to do when
they are using the system to solve the customer’s problem. You can also list a set
of use cases to help define the system’s scope.

Example 4.9 List a minimal set of use cases for the following actors in a library system:
Borrower, Checkout Clerk, Librarian, Accounting System.

128 Chapter 4

Developing requirements

Exercises

E62

Borrower:

J Search for items by title.

... byauthor.

J ... by subject.

' Place a book on hold if it is on loan to somebody else.

d Check the borrowers personal information and list of books currently
borrowed.

Checkout Clerk:
All the Borrower use cases, plus
Check out an item for a borrower.

Check in an item that has been returned.

a

a

a

'd Renew an item.
' Record that a fine has been paid.
' Add a new borrower.

a

Update a borrower’s personal information (address, telephone number etc.).

Librarian:

. All of the Borrower and Checkout Clerk use cases, plus
'Jd Add a new item to the collection.

1 Delete an item from the collection.

J Change the information the system has recorded about an item.

Accounting System (acting autonomously):

J Obtain the amount of overdue fines paid by borrowers.

For the following systems list the actors and, for each of these actors, list as
many use cases as you can think of.

(a) A system to handle the functions of a mail-order company that manages a
warehouse of goods, takes orders from customers by telephone, and ships
goods overnight to customers.

Section 4.6 | 129

Use cases: describing how the user will use the system

(b) A system to handle electronic voting. The system will allow electors to vote
for a specific number of candidates, and only vote once. At the end of the
voting period, the system displays the result of the vote.

(c) A camping reservation system for multiple campgrounds. Campground
managers register many details of their site in the system, including maps
of camping locations and services available. Campers use the system to
select and reserve a camping location.

(d) The microwave oven system of Example 4.6.

Building a use case model
So far, we have discussed the first two steps of use case analysis, listing the actors
and listing the use cases. To build a complete use case model, we now need to
describe the use cases in more detail. A use case model consists of a set of use
cases, and optional descriptions or diagrams indicating how they are related.

How to describe a single use case
The following is how we suggest you describe a complete use case. Only the
name and steps are essential — you may choose to provide a simplified use case
description that omits the other components.

A. Name. Give a short, descriptive name to the use case. This should be a verb
phrase describing the action the user will do with the system. It is also useful to
include a number as a unique identifier for each use case.

B. Actors. List the actor or actors who can perform this use case. For example, in a
library system both a borrower and a librarian can check out a book.

C. Goals. Explain what the actor or actors are trying to achieve. For example, in a
library system, the goal of checking out a book would be to borrow the book in
order to read it.

D. Preconditions. Describe the state of the system before the use case occurs by
listing any conditions that must be true before an actor can initiate this use
case. For example, to be able to check out a book, the book must be available
and the client must not have any
overdue fines.

Use case versus task analysis

Use case analysis is similar to task anal-

ysis. Task analysis has been traditionally

used to understand and improve the
efficiency of the tasks that users per-

E. Summary. Summarize what occurs as
the actor or actors perform the use
case.

F. Related use cases. List use cases that

may be generalizations, specializa-
tions, extensions or inclusions of this
one. Later, we will explain these rela-
tionships.

form, whether or not they are using a
computer. User interface designers
sometimes continue to use the term
task analysis.

130|

Chapter 4

Developing requirements

G. Steps. Describe each step of the use case using a two-column format, with the

Example 4.10

Example 4.11

left column showing the actions taken by the actor, and the right column
showing the system’s responses.

. Postconditions. What state is the system in following the completion of this

use case.

In general, a use case should cover the full sequence of steps from the beginning
of a task until the end.

A use case should describe the user’s interaction with the system, not the
computations the system performs. For example in a use case for withdrawing
money from an automated teller machine, you would describe the fact that the
user inserts his or her card, responds to various prompts by pressing some
buttons, and then removes his or her card and money. You would not describe
how communication with the bank is established or how the system computes
any fees it charges. The latter information is clearly important, but it belongs in
a different part of the functional requirements.

A use case should also be written so as to be as independent as possible from
any particular user interface design. In Example 4.10, for example, instead of
writing, ‘Push the “Open...” button’ as the first steps, we write ‘Choose the
“Open...” command’. The command could then be implemented as a button, a
menu item, a keystroke or a voice command. Similarly, we have not specified
whether the user types the file name or uses the mouse to select it from a list.
Nor have we indicated what the ‘File open’ dialog looks like.

Describe in a simplified format a use case for opening a file in an application.

Use case: Open file

Steps:
Actor actions System responses
1. Choose ‘Open... command. 2. Display ‘File open’ dialog.
3. Specify filename.
4. Confirm selection. 5. Remove dialog from display.

Briefly describe a use case for leaving a particular automated car park (parking
lot).

Use case: Exit car park, paying cash
Actors: Car drivers
Goals: To leave the parking lot after having paid the amount due.

Preconditions: The driver must have entered the car park with his or her car,
and must have picked up a ticket upon entry.

Example 4.12

Section 4.6 | 131

Use cases: describing how the user will use the system

Summary: When a driver wishes to exit the car park, he or she must bring his
or her car to the exit barrier and interact with a machine to pay the amount due.

Related use case: Exit car park by paying using a debit card

Steps:
Actor actions System responses
1. Drive to exit barrier, triggeringa 2a. Detect presence of a car.
Sensor. 2b. Prompt driver to insert his or her
card.
3. Insert ticket. 4. Display amount due.
5. Insert money into slot. 6a. Return any change owing.
6b Prompt driver to take the change
(if any).

6¢. Raise barrier.
7. Drive through barrier, triggering 8. Lower barrier.
a sensor.

Note that we have not dealt with the case where the user has not entered enough
money at step 5. We will deal with this case later.

A use case should normally include only actions in which the actor interacts
with the system. For example, when developing use cases for a library system,
you would not include actions such as ‘Get a book from the shelves’ or ‘Read the
bookl However, if there is a manual task that must be done between two
interactions with the computer, then this can be part of the use case; for
example, ‘Stamp the book with the due date’ is a valid action in Example 4.12.

Describe in detail the ‘Check out an item for a borrower’ use case as performed by
the checkout clerks at the circulation desk of a library. This is one of the use cases
listed in Example 4.9.

Use case: Check out an item for a borrower
Actors: Checkout clerk (regularly), chief librarian (occasionally)

Goals: To help the borrower to borrow the item if they are allowed, and to
ensure a proper record is entered of the loan.

Preconditions: The borrower must have a valid card and not owe any fines. The
item must have a valid barcode and not be from the reference section.

Steps:
Actor actions System responses
1. Scan item’s barcode and barcode 2. Display confirmation that the
of the borrower’s card. loan is allowed.

132|

Chapter 4
Developing requirements

Exercise

E63

3. Stamp item with the due date.
4. Confirm that the loan is to be 5. Display confirmation that the
initiated. loan has been recorded.

Postconditions: The system has a record of the fact that the item is borrowed,
and the date it is due.

Write use case descriptions for the following activities:

(a) Paying a bill at an automatic teller machine.
(b) Creating a table in a word processor.

(c) Programming a microwave oven to turn on in five hours and heat some

food.
(d) Read messages in a voice mail system.

(e) Programming a thermostat to set the day and night temperatures.

Use case diagrams

Exercise

Eé4

Use case diagrams are UMLs notation for showing the relationships among a set
of use cases and actors. They help a software engineer to convey a high-level
picture of the functionality of a system.

It is not necessary to create a use case diagram for every system or subsystem.
For a small system, or a system with just one or two actors, a simple list of use
cases will suffice.

As Figure 4.3 shows, there are two main symbols in use case diagrams: an
actor is shown as a stick person and a use case is shown as an ellipse. Lines
indicate which actors perform which use cases. You do not actually need to write
the word ‘Actor’ in each actor’s name; however, we find it useful to do this when
it helps prevent confusion with classes of the same names.

For the systems of Exercise E62, draw a use case diagram that shows which
actors perform which use cases.

Extension, generalization and inclusion of use cases

You may want to develop a group of distinct but related use cases. For example,
when an actor interacts with a system to achieve a particular goal, he or she may
select different options, perform some action repetitively, provide different
inputs, or answer too slowly causing a time-out error. Each variant or repetitive

Section 4.6 | 133

Use cases: describing how the user will use the system

X

Student Actor

X

Professor Actor

Add course offering
Add course
Registrar Actor

Find information about course

Figure 4.3 A simple use case diagram showing three actors and five use cases

Register in course

Enter grade
for course

pattern of interaction can be represented as a separate use case. Similarly, the
system might have a special reaction when a file cannot be found. The use case
modeler can use extensions, generalizations or inclusions to represent different
types of relationships among use cases.

B Extensions are used to make optional interactions explicit or to handle
exceptional cases. A use case extension can, for example, describe what happens
if an actor provides a wrong filename to access a given file or describes the
extra interaction that occurs if the actor decides to browse in order to locate the
required file instead of simply typing a filename. By creating separate extension
use cases, the description of the basic use case remains simple. In the extension,
you should indicate which step is the extension point - the point at which the
extension changes the basic sequence.

B Generalizations work the same way as in a class diagram and use the same
triangle symbol: several similar use cases can be shown along with a common
generalized use case. In Example 4,13, the general ‘open file’ use case has two
sub use cases: ‘open file by typing name, and ‘open file by browsing’

M Inclusions allow you to express a part of a use case so that you can capture
commonality between several different use cases. Even very different use cases
can share a sequence of actions. For example, many different use cases might
require an actor to specify a password, to browse through a list of items, or to
open a file. Rather than repeating the details of such common interactions in
multiple use cases, you can create a special use case that will be included in
other use cases. Such a use case represents the performing of a lower-level task
with a lower-level goal.

In practice, it can be difficult to decide whether to use specialization or
extension. Although it is worth trying to understand the distinction, it is not
worth wasting time in any particular model if you have trouble choosing
between these constructs.

134| Chapter 4

Developing requirements

Example 4.13 Describe related use cases that have to do with opening a file in an application.

Use case: Open file

Related use cases:
Generalization of:

J open file by typing name
1 open file by browsing

Steps:
Actor actions System responses
1. Choose ‘Open... command. 2. Display ‘File open’ dialog.
3. Specify filename.
4. Confirm selection. 5. Remove dialog from display.

Use case: Open file by typing name

Related use cases:
Generalization: Open file

Steps:
Actor actions System responses
1. Choose ‘Open... command. 2. Display ‘File open’ dialog.

3a. Select text field.
3b. Type file name.
4. Click ‘Open. 5. Remove dialog from display.

Use case: Open file by browsing

Related use cases:
Generalization: Open file
Includes: Browse for file

Steps:
Actor actions System responses
1. Choose ‘Open..." command. 2. Display ‘File open’ dialog.

3. Browse for file (included use case).
4. Confirm selection. 5. Remove dialog from display.

Exercises

E65

E66

E67

Section 4.6 | 135

Use cases: describing how the user will use the system

Use case: Attempt to open file that does not exist

Related use cases:
Extension of: Open file by typing name (extension point: step 4: Click ‘Open’)

Actor actions System responses

4. Click ‘Open. 4a. Indicate that file does not exist.
4b. Correct the file name.

4c. Click ‘Opern. 5. Remove dialog from display.

Use case: Browse for file (inclusion)
Steps:

Actor actions System responses

1. Ifthe desired file is not displayed, 2. Display directory.
select a directory.

3. Repeat step 1 until the desired
file is displayed.

4. Select a file.

The graphical notation for showing extension, generalization and inclusion is
illustrated in Figure 4.4. The open triangle points to a generalization. The «extend»
and «include» stereotypes show the other relationships between use cases.

Note that actors can also be arranged in a generalization hierarchy. In Figure 4.4,
‘System Administrator’ is a sub-actor of ‘Ordinary User’ This means that all System
Administrators can also act as ordinary users, and do such things as open files.

Write the following use cases, which are related to the ‘Exit car park, paying
cash’ use case of Example 4.11.

(a) Exit car park by paying using a debit card.
(b) Attempt to exit car park without initially entering enough money.
(c) Exit car park.

Draw a use case diagram showing the relationships among the use cases of the
last exercise.

Create a complete use case model for the systems you worked on in Exercises
E55 to E57.

136| Chapter 4

Developing requirements

Figure 4.4

II Open file

Ordinary User
Open file by
typing name

Open file by
browsing

'
'
1«extend» 1«include»
| '
y

Attempt to open file Browse for file
that does not exist

Extension, generalization and inclusion in a use case diagram

System
Administrator

The modeling processes: choosing use cases on which to focus

Exercise

E68

You should identify all the use cases associated with the software product, but
you have to put varying emphasis on them when actually developing the system.
Often one use case (or a very small number) can be identified as central to the
system. For example, in an airline reservation system, the central use case will
be ‘Reserve a seat on a flight. Once identified, the system can be built around
this particular use case.

There are also other reasons for focusing on particular use cases:

You may identify some use cases as high risk because you expect to have
problems implementing them. For example, in the GPS-based Automobile
Navigation Assistant (GANA) described in Section 4.11, you may identify
‘Enter navigation mode’ and ‘Speak now’ as high risk. These use cases will
require exploratory prototypes, since it will be challenging to ensure that the
voice output is easy to understand and is spoken to the user at the right time.

Some use cases will have high political or commercial value. For example, in an
online stock exchange system, a use case in which the user can see, in real time,
the evolution of the value of a given stock would not be essential — the users
could do their jobs without it. Nevertheless, it might be given high priority
because of its appeal when presenting the product prototype to potential
clients.

For the following systems create a list of use cases and describe each of them in
detail. Then identify the central ones, and any other ones that should be given
high priority.

(a) A web-application to pay bills from your bank account.

Section 4.6 | 137

Use cases: describing how the user will use the system

(b) The GANA navigation system.
(c) A video-cassette recorder.
(d) A voice mail messaging system.

(e) A system to create digital photo albums on your computer.

E69 Identify the central use cases and the ones that should be given highest priority
in the use case models you worked on in Exercise E67.

The benefits of basing software development on use cases

Use case analysis is an intuitive way to understand and organize what the system
should do, since it is based on user tasks and expresses the tasks in natural
language. It can also be used to drive the development process; in particular, use
cases:

B Can help to define the scope of the system - that is, what the system must do
and does not have to do.

M Are often used to plan the development process. The number of identified use
cases is a good indicator of a projects size. Development progress can be
measured in terms of the percentage of use cases that have been completed.

M Are used to both develop and validate the requirements. If some piece of
proposed functionality does not support any use case, then it can be
eliminated. Users and customers can also understand requirements better if
they are expressed in terms of use cases. The use cases therefore can serve as
part of the contract between the customers and the developer.

B Can form the basis for the definition of test cases (discussed in Chapter 10).

B Can be used to structure user manuals.

However, use cases must not be seen as a panacea. There are three things to
watch out for:

1. The use cases themselves must be validated, using the requirements validation
methods to be discussed in Section 4.9. For example, it is important to make
sure that the set of use cases is complete and that they are expressed
consistently and unambiguously.

2. There are some aspects of functional requirements that are not covered by use
case analysis. For example, only activities triggered by an actor will appear as
use cases. An example of something not shown as a use case is the automatic
cleaning of a database to remove outdated information. Although it is not a use
case, this is still a functional requirement since it is important to the user that
the outdated information be periodically purged.

138 | Chapter 4

Developing requirements

3. You should be aware that when software requirements are derived from use
cases, the software tends simply to mirror the way users worked before the
software was developed. In other words, innovative solutions may not be
considered. As an illustration of this last point, try to describe a use case for
adjusting the wake-up time of an alarm clock. You will probably follow the
procedure you use yourself to adjust your own clock, even though there might
be more efficient and innovative ways to do it (for example, using speech
recognition).

Scenarios

A scenario is an instance of a use case that expresses a specific occurrence of the
use case with a specific actor operating at a specific time and using specific data.
It can help to clarify the associated use case. It is also often simply called a use
case instance.

Example 4.14 Describe a concrete scenario corresponding to the ‘Exit car park, paying cash’ use
case from Example 4.11.

Steps:
Actor actions System responses
Drives to the exit barrier. Detects the presence of a car.
Displays: ‘Please insert your ticket.
Inserts ticket. Displays: Amount due $2.50'.
Inserts $1 into the slot. Displays: Amount due $1.50’
Inserts $1 into the slot. Displays: Amount due $0.50’
Inserts $1 into the slot. Returns $0.50.
Displays: ‘Please take your $0. 50 change’
Raises barrier.
Drives through barrier, Lowers barrier.

triggering sensor.

4.7 Some techniques for gathering requirements

You can gather requirements from the same sources of information as you used
for domain analysis: i.e. from the various stakeholders, from other software
systems, and from any documentation that might be available.

In this section we list some structured techniques that are particularly
effective at gathering (also known as eliciting) requirements. All of them can be
used together to obtain a good set of requirements.

The first gathering technique, observation, is used to obtain subtle
information that stakeholders may not think of telling you. The next three,
interviewing, brainstorming and prototyping, are complementary techniques

Section 4.7 | 139

Some techniques for gathering requirements

for actively asking for the opinions and knowledge of stakeholders as well as
forcing the stakeholders to stretch their minds.

Users participate in all four of these techniques, therefore they feel personally
involved in the project. This sense of involvement means that they will more
readily accept the final system. In Chapter 7, we will focus on users and discuss
other ways to make them feel personally involved.

Gathering requirements is an iterative process that must be combined with a
process of analyzing the requirements to systematically organize and prioritize
them. Building a use case model, as discussed in the last section, is a common
approach to analysis. You can also analyze requirements with the help of other
types of UML diagrams discussed in Chapters 5, 8 and 9. The analysis process
can be done individually or in a group setting; often much analysis is done with
users during the brainstorming and iterative prototyping sessions we will
discuss shortly.

Whichever techniques you use, it is important to put adequate time and effort
into the requirements process. Many projects have run into problems because
the software engineers rushed the requirements stage and jumped into design or
coding too early. Coding early can be fine as long as it is only rapid prototyping,
not developing the final product.

Observation

You can read documents and discuss requirements extensively with users, but
often only the process of observing the users at work will bring to light subtle
details that you might otherwise miss. For example, in a retail application you
may notice the manager bargaining with buyers over the price of certain items.
In an interview, she may forget to tell you that this is something that ought to be
automated.

In its simplest form, observation means taking a notebook and ‘shadowing’
important potential users as they do their work, writing down everything they
do. You can also ask users to talk as they work, explaining what they are doing.
In another variation, you can videotape the session so that you can analyze it in
more detail later.

Observation, and analyzing the resulting information, can consume a large
amount of time. Therefore it is best done only for the development of large
systems with which potential users will be performing complex tasks.

Interviewing

Interviewing is a widely used technique. However, a well-conducted series of
interviews can elicit much more information than poorly planned ad-hoc
interviews. Unfortunately, despite it being an important skill, software engineers
are rarely trained in conducting interviews; the guidelines below should help
you perform this important step effectively.

Firstly, plan to have as many members of the software engineering team
interview as many stakeholders as possible. Consider going beyond stakeholders,

140)

Chapter 4

Developing requirements

talking to users of competing products, marketing personnel, and people
involved with other systems that may interact in any way with the proposed
system.

Spread out the interviews over time, and allow yourself several hours for each
interview, even if you do not expect to use that much time. Time between
interviews will allow you to analyze what you have heard and to think of
additional questions. Leaving plenty of time ensures that if the interviewee is
providing lots of information, you can let him or her continue. For the most
important stakeholders you should hold a series of interviews, going into more
depth each time. This allows your knowledge and analysis to improve in the
intervening period.

Prepare an extensive list of questions, although do not be disappointed if there
is not enough time to have them all answered in a given interview.
Brainstorming, described in the next section, is an excellent technique to
generate a list of questions. The following are some types of questions you
should not forget:

Ask about specific details such as maximums and minimums, whether there
are any exceptions to rules and what possible changes might be anticipated. For
example, if you are told that there are exactly seven levels of management in an
organization, you should find out what they are, and you should also ask
whether this number is likely to change (even if the user says no, never design a
system that is inflexible about a detail like this). Journalists are taught to ask the
five W’s: who, what, when, where and why; this suggestion applies to
requirements interviews as well.

Ask about the stakeholder’s vision for the future. This question may elicit
innovative ideas and suggest what flexibility should be built into the system.
Some of the visionary ideas may, in fact, be easy to implement and should be
considered immediately - customers and users not familiar with technology
may think only of computerizing existing processes and may believe that more
extensive changes are unattainable.

If a customer or user presents concrete ideas for their view of the system, ask if
they have any alternative ideas, or ask how they would feel about alternative
ideas you have. This will help ascertain how flexible they are.

Ask what would be a minimally acceptable solution to the problem. In
requirements gathering, you will usually obtain far too many ideas; it is
important to realize what customers and users consider to be their very basic
needs - the basic needs may be surprisingly few in number. Without this
information you may produce expensive facilities that are not used, often called
shelfware.

Ask for other sources of information. The stakeholder you are interviewing
may have interesting documents or may know someone with useful knowledge.

Section 4.7 | 141

Some techniques for gathering requirements

B Have the interviewee draw diagrams. The diagrams could show such things as
the flow of information, the chain of command, how some technology works,
or practically anything. Diagrams can be a focal point to stimulate improved
information gathering.

An interviewer should cultivate listening skills and empathy for users and
customers. Empathy is the ability to reach into the mind of the interviewee and
really feel what they are feeling. Listening skills include patiently absorbing what
the interviewee is telling you, and then paraphrasing it back to them, seeking
confirmation so as to avoid misconceptions. Having empathy improves
listening, because you will often find that users are telling you facts that are
surrounded by emotional issues having to do with work frustrations, office
politics etc. You have to be able to show the user you understand their feelings,
and at the same time you have to be able to extract the facts and real needs from
them.

Interviewing can be intimidating for some people. Customers and users can
behave in annoying ways. There also can be significant communications
problems if the two parties have quite different backgrounds. In order to avoid
frustration, you have to make clear your level of knowledge: if the interviewee is
talking about complexities you do not understand, ask her to tell you the basics.
If she is explaining things you already know, summarize your knowledge so that
she does not feel she needs to repeat it.

Analysis should not take place at early interviews — they should be used
primarily for information gathering. In particular, if the user starts dictating
exactly what they want to see in the system, do not give him or her the
impression that, yes, you will deliver it. Instead, point out that the ideas are
important, but that you will have to analyze them and discuss them with others.

Following the interview process, you should summarize the information
you have found and share it with all the stakeholders, along with a request
for comments. Doing so may stimulate the stakeholders to give you
additional ideas.

Exercise

E70 Divide up into groups of three. Initially, one person will be the interviewee, one
person the interviewer, and the third person will observe the process. Each
person should first imagine a problem they have for which they desire a
software solution and present this to their group-mates. Each person then takes
a problem statement from another group member and prepares to conduct an
interview by composing a list of questions. Each member takes his or her turn
as interviewer, practicing the interview techniques described above, and taking
detailed notes as he or she proceeds. Each interview should last about 10
minutes. After each interview, the observer gives feedback to the interviewer
about the effectiveness of the questions.

142|

Chapter 4

Developing requirements

Brainstorming

Brainstorming is an effective way to gather information from a group of people.
The general idea is that the group sits around a table and discusses some topic
with the goal of generating ideas. However, as with interviews, adding some
structure to the brainstorming process can help elicit a larger amount of
information. One of the keys to success is arranging for the brainstorming
session to be led, or moderated, by somebody trained in the process.

The following is a suggested approach to organizing and running an effective
brainstorming session:

. Call a meeting with representation from all stakeholders. Effective brain-

storming sessions can be run with five to 20 people.

. Appoint an experienced moderator (also known as a facilitator) - that is,

someone who knows how to run brainstorming meetings, and will lead the
process. The moderator may participate in the discussions if he or she wishes.

. Arrange the attendees around the periphery of a table and give them plenty of

paper to work with.

. Decide on a ‘trigger question’ This is a key step in the process. A trigger

question is one for which the participants can provide simple one-line answers
that are more than just numbers or yes/no responses.

Examples of trigger questions include the following: What features are
important in the system? What future sources of data should we anticipate?
What outputs should be produced by the system? What classes do we need in
our domain model? What interview questions should we ask? What issues have
we not considered? What are the risks or difficulties in this project? What
trigger questions can we ask?

The trigger question can be determined by the person who called the meeting,
by the moderator, by a quick discussion, or by brainstorming followed by a vote.

. Ask each participant to follow these instructions:

(a) Think of an answer to the trigger question, no matter how trivial or
gger q
questionable the answer is!

(b) Write the answer down in one or two lines on a sheet of paper, one idea per
sheet.

(c) Pass the paper to the neighbor on your left (i.e. clockwise) to stimulate his
or her thoughts.

(d) Look at the answers passed from your neighbor to the right and pass these
on to your left as well. Use the ideas you have read to stimulate your own
ideas.

6. Continue step 5 until ideas stop flowing or a fixed time (5-15 minutes) passes.

Section 4.7 | 143

Some techniques for gathering requirements

7. Moving around the table, ask everybody to read out one of the ideas on the
sheets that happen to be in front of them. If anyone seeks an explanation, the
originator of the idea may comment briefly (although he or she may choose not
to say anything in order to remain anonymous). The moderator, or a secretary,
writes each idea on a flip-chart. Then, optionally, the whole group may briefly
discuss the idea.

8. After a fixed time period, or after all ideas have been recorded on the flip-chart,
the group may take a series of votes to prioritize them. For example, every
person may be given a fixed number of votes that they can allocate to the
answers they think are the most important.

The concept of passing ideas clockwise round the table is illustrated in
Figure 4.5.

Figure 4.5 Phase 5 of structured brainstorming: passing ideas around the table to stimulate
new ideas

The main advantage of brainstorming is that in a moderated group session,
people are energized and tend to spontaneously invent many good ideas,
stimulated by what others have said. There are two advantages of using a
structured approach as described above. First, introverted or timid people can
have their say effectively since anonymity can be assured. Sometimes, such
people think their ideas are not very good because they lack self-confidence.
Second, a lot of thinking goes on in parallel: during the first phase, everybody is
thinking of their own ideas and writing them down concurrently. The session is
therefore more productive than if everybody had to wait their turn to express
their ideas.

Exercise

E7| Divide into groups of 7 to 12 people. Each group should then elect a moderator
and hold a brainstorming session for 20 minutes, following the procedures
defined above. A possible trigger question might be: ‘what requirements could

144

Chapter 4
Developing requirements

JAD sessions

Joint Application Development (JAD) is a technique related to brainstorming. In JAD, the developers
meet with customers and users in a secluded location for a period of three to five days. The entire
time is spent working together to define the requirements. Activities can include regular
brainstorming, and negotiation of specific wording. The participants can work together as one large
group, or can divide up into smaller groups to work on specific issues. The final output should be a
written requirements document.

An important rule is that nobody should be interrupted by any other activity; therefore
JAD sessions must not be held near the offices of any of the participants. The participants
often travel to a special location and stay in a hotel, as if going to a conference. Activities can
take place in the evenings as well as in regular working hours.

The energy generated by intense JAD sessions can often shorten the period required to
work out the requirements from several months to several days.

be implemented in the SimpleChat system, or some other system the group is
developing?’

Prototyping

A prototype is a program that is rapidly implemented and contains only a small
part of the anticipated functionality of a complete system. Its purpose is to
gather requirements by allowing software engineers to obtain early feedback
about their ideas.

The simplest kind of prototype is a paper prototype of the user interface. This
is a set of pictures of the system that are shown to customers and users in
sequence, to explain what would happen when the system runs. It can often be
a very powerful tool for eliciting ideas and feedback, and requires very little
effort to create.

Because paper prototypes are easy to create, they are ideal for parallel
development. In parallel development, several software engineers independently
create their own view of the system - the resulting prototypes are then evaluated
and the best features of each become part of the system’s requirements. It is
possible to carry parallel development further than a paper prototype, but that
takes more work.

The most common type of prototype is a ‘mock-up’ of the system’s user
interface, created using a rapid prototyping language. Rapid prototyping
languages allows you to create code very quickly in order to display the
important parts of a user interface; however, they have various weaknesses that
limit their usefulness for creating the final version of complex systems. The
weaknesses include inefficiency, and limitations on your ability to create robust
and flexible designs.

Users can sometimes make actual use of a rapid prototype; however, there is
often nothing much behind the user interface - it may not, for example, perform
any computations, access any databases or interact with any other systems. You

Section 4.8 | 145

Types of requirements document

should modify a rapid prototype as many times as necessary in response to
feedback from users. However, you will not have put effort into designing its
architecture, therefore it will become hard to maintain, and will contain many
bugs. Because of this you should not normally turn it directly into the final
system; it should be used only as a requirements gathering tool.

In addition to prototyping the user interface, you may sometimes choose to
prototype other aspects of a system, such as an algorithm or a database. As with
all prototypes, the intent is to test and validate existing ideas, as well as to
generate new ideas.

48 Types of requirements document

To perform good software engineering, it is always appropriate to write down
requirements. The level of detail of the requirements can, however, vary
significantly from project to project. At one extreme, there are documents that
informally outline the requirements using a few paragraphs or simple diagrams.
At the other extreme, there are specifications that contain thousands of pages of
intricate detail. Unfortunately developers often err towards either extreme.
Choosing the right level of detail requires careful balancing because too little
detail can result in a system that does not adequately solve the problem, whereas
too much detail can be a waste of time and can make the development process
too inflexible.

Frequently, you have to produce several requirements documents, each
describing a different part of the system or a different level of detail. When doing
this, your strategy should be to make them all complementary. Each should refer
to other documents as necessary, but there should not be redundancy between
the documents. Redundancy leads to contradictions when changes are made in
one place but not another.

Agile approaches to requirements
In agile development approaches you do not develop large requirements documents. Instead, two
approaches are employed: user stories and test-first development.

A user story is similar to a use case, but has a looser structure; it describes some
proposed software feature from the perspective of how the user will use it and should be
limited to about three sentences. Development proceeds by choosing a very small number of
user stories to implement in the next iteration. Ideally each iteration will take only a few days
to develop.

The first stage of development in many agile approaches is to first develop test cases
(discussed in Chapter 10). The series of test cases becomes the detailed specification of how
a user story should be implemented.

Requirements documents for large systems are normally arranged in a
hierarchy. There is a top-level document describing the overall system, its
subsystems and how the subsystems interact. Then there are separate

146| Chapter 4

Developing requirements

Figure 4.6

documents describing each subsystem, and sometimes each sub-subsystem.
When we talk about ‘the system, we are referring to whatever the current
development team is working on, which may be a subsystem or a larger system.
This notion of a hierarchy of requirements documents is illustrated in

Figure 4.6.

Small system

Requirements

XXKKXKX
XXX
XOOOOONKK

000K
XOOORXXHKHNHHNK
XXX

XOOOOGONKX

Medium system
Requirements
XK
X0
300HHHHHK
30000

XXHKXXHKHXXKK
XXXXXHX

OUXHHXNHNNKK

subsystem 1

subsystem 2

Requirements
Definition

Requirements
Definition

Large system

Requirements
X000¢

XO0000KK

Xoxx
XHXXXHXNHNK
XXX
XOH0OOUXNNKX
XO0000K

XXXHKXXKXKKKKKK

subsystem 1
Requirements

X000¢
XXX

subsystem 2
Requirements
e

Requirements

00¢ e
Requirements XHXUXNKRHXK Specification

| Specification XOKXNRKXXNHK
o] xoox X00000x

Requirements

ireme XXX
%| Specification 2] oooxcx

XXX
XXX XIOOXKXXXXX
XXKXXXHUXKNXKHK XXXXX

XXXOXKKXXXXXXX
XX

sub-subsystems

XXX
XXXXXXKXXKKKXXK

sub-subsystems

Hierarchies of requirements documents

How do you decide what type of document to produce and how much detail
should be provided? The following factors can guide you as you make this
decision:

The size of the system. A large system will need more detailed requirements
for several reasons. First, there is simply more to say. Second, the system will
need to be divided into subsystems so that different teams can work on each
part — it then becomes essential that everybody have a clear idea of what
everybody else is doing, and how the subsystems interconnect.

The need to interface to other systems. Even a small system will need to have
well-described requirements if other systems or subsystems are going to use its
services or communicate with it. For example, as discussed in the previous
chapter, you have to specify the protocol with which clients and servers
communicate, otherwise you will never be able to get them to work together.

The target audience. The requirements must be written at a high-enough level
so that the potential users can read them. If the system is intended for the
general population, it should omit jargon that would be understood by only a
few people. On the other hand, the system might be intended for users with
specific scientific or engineering backgrounds, in which case technical details
from their domain can appear. Only if the system is strictly intended for use
exclusively by other software engineers (perhaps it is a framework, or a class
library) is it reasonable to include details down to the level of algorithms, data

Section 4.8 | 147

Types of requirements document

structures and procedures. Normally such a level of detail would only be found
in a design document; however, in certain types of utility packages the
distinction between requirements and design can become blurred.

The contractual arrangements for development. If you are arranging a
contract by which a third party will develop software for you, then you will
have to specify the requirements with considerable precision. Similarly, if you
are developing requirements under contract, for a military client, for example,
then you will have to follow specific rules regarding the format and detail to be
provided.

The stage in requirements gathering. At an early stage in requirements
gathering, it is important not to write large volumes of precise and detailed
requirements — the risk that these will have to be completely rewritten is too
great. An outline describing a system or subsystem in a few paragraphs or
pages may be best at this stage. Once all the stakeholders agree with a short,
informal statement of requirements, successive levels of detail can be added.
Often it is best to develop a rough prototype, based on a very short statement of
requirements, as the first iteration of a system. You should then experiment
with the prototype, learning a lot of information about what is good and bad
about it. You can then add more detail to the requirements as you develop the
next iteration, which may be a more advanced prototype or a formal release of
a polished system. You should think of this process of repeatedly prototyping as
an integral part of the requirements gathering process.

The level of experience with the domain and the technology. If you are
developing software in a well-known domain and using well-known
technology, then you should be able to produce a complete requirements
document before starting to design the system. However, if you are developing
innovative software, then more caution is needed. You should certainly develop
prototypes based on rough requirements to check out the validity of your ideas
or the reliability of the technology. By technology, we mean such things as new
programming languages, class libraries, frameworks, algorithms, hardware,
databases or third-party software with which you will be interfacing.

The cost incurred if the requirements are faulty. Any system that, if it fails,
could jeopardize safety or the environment must be precisely specified.
Furthermore, those specifications should be subjected to rigorous analysis and
review. Examples of such critical systems include those that control industrial
processes, vehicles, telecommunications networks, medical equipment and
many consumer devices. The safety risk involved with nuclear plants and
automobiles is clear. Telecommunications networks failures can also pose a
safety risk if people rely on them during emergencies. Software failures in
consumer devices such as garage door openers or washing machines could lead
to injury, fires or floods, not to mention severe financial penalties resulting
from litigation. In addition to safety risks, some types of software failures can
lead to extensive economic damage. A famous example is software that would

148)|

49 Reviewing requirements

Chapter 4

Developing requirements

Exercise

E72

not have operated in the year 2000 had it not been fixed - the requirements for
software written in the 20th century should have specified 4-digit dates, instead
of 2-digit dates.

As software evolves, requirements documents are often written describing
incremental changes such as new features to be added to an existing system.
Doing this repeatedly can cause maintenance difficulties. This is because, after
a while, understanding the entire system will require reading the original
requirements, which are now out of date, plus the requirements for all of the
successive changes. To combat this problem, it is normally a good idea, when
making changes, to update a document that describes general requirements for
the entire system.

Requirements documents are given different names in different organizations.
The term requirements definition normally refers to a less detailed, higher-level
document, whereas the term requirements specification normally refers to a
more detailed and precise document. You should, however, avoid being overly
concerned about the precise names used for documents and follow the
convention used in your company.

For each of the following systems, describe the kind of requirements
documentation you think should be produced. Indicate the overall level of
detail that should be provided, whether iterative refinement would be
warranted, and whether a hierarchy of subsystem requirements would be a
good idea. Justify your answers.

(a) Software controlling a manned spacecraft being sent to Mars.
(b) Software for managing the payroll at a large company.

(c) Software for the ‘asteroids’ com-
puter game to be embedded in a

cellular telephone. Design before requirements?

For a large system, you have to break
it down into subsystems, and then
develop requirements for each sub-
system. This process of subdividing
the system is part of software
architecture — a design activity we will
discuss in Chapter 9. This means that
some aspects of design have to be
interspersed among the requirements

(d) Software to find all the occur-
rences of a certain word or
phrase in email you have sent or
received.

When developing requirements,

software engineers should adhere to
the guidelines listed below. Most of
the guidelines apply to prototypes as

activities. The important thing to
remember is to do the highest level of
requirements analysis first.

Section 4.9 | 149

Reviewing requirements

well as to informal and formal requirements documents. Early prototypes or
drafts of requirements should be reviewed by the author and stakeholders, and
there may need to be several cycles of improvements and repeated review.

The review process normally culminates with a formal requirements review
meeting at which all stakeholders are present. The stakeholders should have
received the document well in advance in order for them to have read it. Ideally,
most of the problems should have been eliminated by reviews of earlier drafts or
prototypes, so that the formal review should not raise major controversies.
However, if extensive changes are identified, then a further formal review may
be needed once the changes are made.

Each individual requirement should be carefully reviewed. In order to be
acceptable, a requirement should:

. Have benefits that outweigh the costs of development. Cost-benefit analysis
is an important skill in software engineering. You sum, in financial terms, the
benefits of the requirement (such as improvements in productivity or sales)
and compare this to the sum of the costs (development cost, hardware needed
for users, training users, and ongoing maintenance, for example). Cost-benefit
analysis can be performed with considerable attention to detail; however, a very
rough estimate can often quickly show that a requirement will provide only a
minimal benefit, but cost substantially more than this to develop. Such
requirements should be immediately cut. In Chapter 11, we will discuss cost—
benefit analysis in more detail and provide an example.

. Be important for the solution of the current problem. Many ideas might be
useful to implement, and might have benefits that outweigh their costs;
unfortunately you have to ruthlessly weed out the less important ideas in order
to reduce the total time required to develop the system, and to reduce risks by
keeping the software from becoming overly complex. The less important ideas
can be deferred for future consideration.

One of the most important rules in software engineering is the 80-20 rule,
which says that 80% of the user’s problem can often be solved with 20% of the
work. You should initially consider producing only that first 20% of the system.
The 80-20 rule is also called the Pareto principle.

Building a list of requirements that does more than needed is sometimes
called ‘gold-plating’ or building a ‘Cadillac system’

. Be expressed using a clear and consistent notation. Each requirement should
be expressed using language that the customers can understand and should be
consistent with the other requirements. Requirements are normally expressed in
a natural language such as English, sometimes supplemented by a formal mathe-
matical language, and often by some form of diagram. Whichever format is used,
consistent style should be applied throughout the requirements document. We
suggest that English sentences should use present tense, active voice, and express
what the system is to do in response to various inputs. For example, rather than
write: “The pharmacist will enter the patient ID number and then the patient’s

150|

Chapter 4

Developing requirements

medication record will be displayed,
write: ‘When the pharmacist enters
the patient ID number, the system
displays the patients medication
record’

Antoine de St. Exupéry on perfection

The importance of excluding unnecessary
requirements brings to mind the words of
Antoine de St. Exupéry: ‘perfection is not
achieved when there is nothing more to

. Be unambiguous. It is typical to add, but when there is nothing more to

find that an English sentence can delete.

have more than one interpretation.

Often this is because words have several closely related meanings. For example,
the following requirement has two ambiguities: “‘When the user selects an
aircraft, the system assigns it to the flight’ The first ambiguity has to do with
the word ‘ircraft’: does this mean a specific plane, or does it mean a class of
aircraft (e.g. Boeing 747s)? Secondly, what does the word ‘flight’ mean? Is the
aircraft being assigned just for a particular day’s departure, or is it being
assigned in general to a flight number that departs every day at the same time?

. Be logically consistent. You should check consistency with any standards, with

other requirements in the document, with higher-level requirements and with
the requirements for other subsystems. In a large system, it can be very hard to
be sure that a requirement does not contradict some other requirement in
some subtle way. In fact, considerable research effort is spent finding ways to
automatically check requirements documents for consistency. However, since
such tools require the document to be written using a mathematical language,
and do not yet work very well for large systems, careful proofreading is the
main way to proceed.

One of the most important ways to help ensure consistency is to avoid
duplicating requirements. It is very common, for example, for a requirement to
be stated in the introduction to a document, and then repeated in more detail in
the body of the document. This is dangerous because if a change is made in one
place, there is a tendency to forget to make the change in the other place. For this
reason, the introductions and conclusions of requirements documents should
not actually contain any requirements.

Another aspect of consistency is consistency of the functional requirements
with the non-functional requirements and with the project plan. These are
addressed in the next two points.

. Lead to a system of sufficient quality. A requirement should contribute to a

system that is sufficiently usable, safe, efficient, reliable and maintainable. It
takes a good deal of expertise to judge whether requirements meet these needs
- special analysis techniques can also be applied that we will not discuss in
detail in this book. For example, to assess the safety of a critical system, formal
mathematical proof techniques may be employed. To assess usability, the
requirements can be validated against a checklist of good user interface design
principles. As we will discuss in Chapter 7, to fully validate a system’s usability
you have to observe users actually working with a prototype.

Section 4.9 | 151

Reviewing requirements

7. Be realistic with available resources. A requirement is realistic if the
development team has the expertise and technology to implement it on the
required platform within the budget and time available. If there is any doubt
about whether a requirement is realistic, further analysis is required. For
example, if there is uncertainty about whether an efficient algorithm can be
found to perform some computation, then experimental prototypes should be
developed and tested before committing to make the computation a
requirement.

8. Be verifiable. The requirements document will not only be the basis for a
system’s design, but also for testing the system. There must be some way that
the system can be tested so as to clearly conclude whether or not the
requirement has been correctly implemented. As we mentioned earlier, this
issue is mostly a concern for quality and platform requirements. For example:
‘the search result must be obtained rapidly’ is not verifiable because it is too
vague; readers will wonder what ‘rapidly’ means. A better requirement would
be ‘the first results of the search must appear in less than 1 second on average,
and in less than 3 seconds 95% of the time’

9. Be uniquely identifiable. It is important to be able to refer to each individual
requirement. This is necessary in requirements review meetings so that people
can indicate which requirement they want to discuss. It is also necessary in
design documents to be able to say which requirement is being implemented by
a given aspect of the design, a quality called traceability illustrated in Figure 4.7.
The first step in making requirements identifiable is avoiding long paragraphs;
ideally, each requirement should start a new paragraph. In some documents,
each requirement is given a unique number - sometimes a hierarchical scheme
is used, e.g. 4.7.12.3 means the third requirement in section 4.7.12. Numbering
every single point makes the document cluttered, however, and leaving off the
final number, and requiring people to count a small number of paragraphs, is
often acceptable.

Requirements
document
rationale 1.1 XXXX Design
\\because document
1.2 YYYY due fo
T requirement 1.2
Figure 4.7 Providing traceability by giving justification for what is written, either as pointers

to requirements or as rationale

10. Not over-constrain the design of the system. As we have mentioned before, a
requirement should avoid indicating how it will be implemented, in order to
give the designer as much freedom as possible to make decisions.

152|

Chapter 4

Developing requirements

11.

12.

13.

14.

In addition to the above ten guidelines for individual requirements, there are
several guidelines for requirements document as a whole:

The document should be sufficiently complete. We already discussed how a
document could either give a high-level overview or be more detailed.
However, at the chosen level of granularity, it should cover all of the
functionality of the system or subsystem. It should also include all appropriate
quality, platform and process requirements.

The document should be well organized. In particular, it should be carefully
designed so that its structure can be easily understood; it can be quickly
scanned, and any given requirement can be easily found. This means giving it a
clear title and dividing it into sections with meaningful headings and
subheadings.

Reasoning should be clear. Rationale should be provided for all requirements
that involve a large amount of analysis, that are controversial or for which
several alternatives are considered. Providing rationale serves several
functions: it reduces the need for software engineers in the future to have to
repeat your analysis when they make changes; it convinces the reader that you
did in fact consider the alternatives; and it alerts the reader to the fact that the
requirement may be controversial. Rationale provides traceability of the
requirements to their justifications, as shown in Figure 4.7.

The document should be agreed to by all the stakeholders. Requirements
should only be considered definitive when all the stakeholders agree they are to
be implemented. The process of negotiation might result in trade-offs being
made - a group of stakeholders may agree to a certain requirement only if a
change is made to some other requirement. For example, one group may want
to run the software on older computers. They may only agree to constrain the
software to run only on new, fast computers if a web interface is added so that
they can still see the output on their older computers.

We suggest that a complete requirements document should have sections
covering the following types of information. Add a table of contents and an
automatically generated index if the document is more than a few pages.

A. Problem. Provide a succinct description of the problem the system is solving.

. Background information. Give information that will help readers understand

the requirements. It should contain references to domain analysis documents,
standards, and the requirements of related subsystems. In this section you can
also discuss important issues you considered, and the rationale for your
decisions (you can also place such rationale directly in sections D and E as long
as those sections do not become cluttered with lengthy discussion).

. Environment and system models. Provide the context in which the system

runs and a global overview of the system or subsystem. Diagrams are very

Section 4.9 | 153

Reviewing requirements

useful here. You should describe the hardware on which the system will run,
and any other subsystems or software with which it will interact.

D. Functional requirements. As discussed earlier, describe the services provided
to the user and to other systems. Describe inputs, outputs, computations and
timing. Diagrams can again be useful.

E. Quality, platform and process requirements. As discussed earlier, describe
any constraints that must be imposed on the design of the system.

Example 4.15 Review the following short statement of functional requirements, pointing out any
problems you find.
Requirements for a restaurant advisor system. This system will allow people to
choose a restaurant in a city. Users enter one or more of the following criteria, and
then the system searches its database for suitable restaurants: food type, price
range, neighborhood, size, service type (fast food, cafeteria, buffet, full service),
smoking arrangements (none allowed, separately ventilated section, non-
separately-ventilated section, allowed on outdoor patio only). The user can also
specify a desired day and time-period, and the number of people in their party.
The system will tap into the reservation database (of participating restaurants)
and only display restaurants that have available space. After entering the criteria,
the user clicks on ‘search’, and the system displays a list of matching restaurants.
For restaurants that participate in the automated reservation system, the user can
click on ‘reserve’ next to a selection in order to make a reservation.

Some of the problems with the above requirements:

(i) Duplication of ‘the system searches for suitable restaurants’/‘the system
displays matching restaurants.

(ii) ‘Food type, ‘price range, ‘neighborhood’ and ‘size’ are inadequately
defined. Are these taken from a fixed set of values, or does the database
just contain free-form information? It will be hard for the user to search
unless the values of these items are standardized.

(iii) There is ambiguity regarding the ‘reservation database’ and the
‘automated reservation system’. Are these the same thing or not?

(iv) It appears that some of the listed restaurants are not in the reservation
system/database. If the user specifies the desired day and time-period,
and the number of people in the party, what does the system do with
restaurants that are not ‘participating’? Are they omitted from the list?

(v) Can the user select just one option or more than one option for ‘type of
food’? The same question applies to ‘smoking arrangements’ (the user
may not care).

154]

Chapter 4

Developing requirements

Exercises

E73

(vi) If the user selects ‘reserve, there must presumably be some way for the
system to record identifying information about the user, so that the
restaurant knows who made the reservation. This is omitted.

It should be noted that the document was called a ‘short statement of functional
requirements, therefore we will hesitate to criticize the fact that it lacks quality
requirements and rationale, or that it is just one large paragraph. However, its
writers should take care of these matters as they add more detail for the next
iteration.

The following are short statements of functional requirements for software
applications. Review each of them, listing as many problems as you can. Justify
your answers by referring to the guidelines. (This exercise is particularly
effective when done in groups of two or three.)

(a) Simple interest calculation program. This is a handy utility for users who
are considering borrowing or lending money. A window pops up when the
program starts. This has three fields entitled: ‘Principal:, ‘Annual interest
rate:’ and ‘Monthly interest payment:. Whenever the user edits one of the
fields the other two fields are automatically computed.

(b) Dispatcher automation system. This system helps speed up the process of
ambulance dispatching. When an emergency call is received, an automated
voice recognition system classifies the case into categories depending on
the level of emergency. All urgent cases are transmitted to the ambulance
dispatcher, who will receive the patient’s record, a summary of the
conversation with the operator, as well as the patient’s address and medical
details if known. The dispatcher uses the system to obtain the number of
the closest available ambulance. The ambulance operator receives all the
information about the case.

(c) Inventory recording system. This system runs on dedicated computers at
the shipping and receiving gate of a warehouse. It is used by all warehouse
staff. Whenever an item enters or leaves the warehouse, a staff member
must record that fact in the system.

A window is always visible on the screen to record items entering the
warehouse. This window has three fields, labeled ‘Product code, ‘Number’
and ‘Description’. Below these fields is an ‘OK’ key. To process an item, the
staff member simply has to enter the product id and click ‘OK;, or press the
‘return’ key. The ‘Number’ field defaults to one.

If the clerk does not enter a product id, a dialog box appears with a list
of valid product ids and their descriptions; the staff member selects a code
from this list. The staff member can also type a description to add a
product code.

Section 4.10 | 155

Managing changing requirements

When the item is successfully entered, the system prints out a sticker
with a barcode on it. The staff member attaches the sticker to the item, and
stores it in the warehouse. The system then clears the fields in the window
so as to be ready to record the next item.

To remove an item from the warehouse, the staff member simply swipes
the item’s sticker past a barcode reader. The system then records that the
item has been removed.

E74 Rewrite each of the statements of functional requirements in Exercise E73,
solving each of the problems you found. Since you will have to add missing
information, your requirements will become substantially longer and take the
form of a requirements definition document. Therefore, pay attention to the
organization of the document and follow the format and guidelines discussed
in this section. We have provided example requirements documents in Sections
4.11 and 4.12 that you can use as templates.

E75 Review the functional requirements for the microwave oven system of
Example 4.6, listing as many potential problems as you can.

E76 Review the requirements you wrote in Exercises E57 and E61.

4.10 Managing changing requirements

One of the most important things to realize about requirements is that they
change. Just because you have written a requirements document, and have
obtained approval of it by all the stakeholders, does not mean that you can
confidently design and implement the system as specified. By the time the
system is delivered, the users’ and customers’ needs will likely have evolved so
that the requirements as documented no longer completely solve the customers’
problem.
The following are some of the changes to anticipate:

B Business process changes. Businesses regularly adjust the way they do things
in order to better compete in the market or merely because they gain
experience and decide that an alternative approach is better. Changes to
business processes can also be prompted by such things as changes in laws, as
well as growth or rearrangement of the company.

B Technology changes. A new release of the operating system, or some other
system with which your system interacts, may force you to reassess the
requirements.

B Better understanding of the problem. Even though everybody might be
confident about the requirements when they are first approved, various
stakeholders may discover problems when looking at them again several
months later.

156|

Chapter 4

Developing requirements

How do you measure
requirements?

Requirements analysis should therefore never really
stop. The development team should continue to interact
with the customers and users, asking them about their

It is very important to be able to problems and their ideas and showing them prototypes
estimate the time it will take t© of the system. Changes to the requirements should be
develop a system as early as possible. mjade whenever the benefits of doing so outweigh the
Once one has developed require- (osts. Certain small changes, especially to the look and
ments, it becomes possible to estimate fee] of the user interface, are usually quick and easy to
size using a set of techniques called ke at relatively little cost. More large-scale changes
Function Point counting. We will have to be carefully assessed: forcing unexpected
discuss this and other cost estimation changes into a partially built system over and over again

techniques briefly in Chapter | 1. will probably result in a poor design and late delivery.

On the other hand, the software that is delivered has to
be useful. It is difficult to strike the right balance, but usually it is better to reject
the more complex but less important requirements changes so as to not delay
development excessively.

When dealing with changes to requirements it is very important to avoid
requirements creep. This is what occurs when the changes are really
enhancements in disguise. Remember we discussed earlier the importance of
delivering the smallest possible system in the first release, minimally solving the
customer’s problem. Any changes to the requirements should if possible avoid
making the system bigger, and they should only make it better if the benefits
exceed the costs. Requirements creep has resulted in very significant cost
overruns in projects — it is just too tempting to add a few new features to make
customers happy. Unfortunately, ‘a few new features’ are often time-consuming
to develop - so leave them to a future release.

A final aspect of managing requirements is keeping track of the different
versions of requirements documents. Each time you change requirements, you
should give the document a new version number. The changes in each new
version should be highlighted to the reader using change bars (vertical bars
shown in the margin of a page). You should also use some kind of archiving or
configuration management system that stores older versions of documents. It
can sometimes be important to be able to go back and look at decisions that were
previously made, but subsequently changed.

4.1l GPS-based Automobile Navigation Assistant (GANA)

The following example requirements document is for an embedded system that
will be installed in special-purpose hardware in cars.

Requirements for GANA software

A. Problem. GANA software will help drivers navigate by giving them directions

to their destination.

Section 4.11 | 157
GPS-based Automobile Navigation Assistant (GANA)

B. Background information. See domain analysis document 1234 (not provided
in this book).

C. Environment and system models. GANA software is to run on special GANA
hardware, described separately in document 1234. As described in document
1234, the hardware provides the following to the software: a) GPS position
information, b) a wireless Internet connection to a map database, c) position of
a trackball, d) a color 10 cm by 10 cm LCD screen, e) six buttons at the bottom
of the screen, and f) input from the car’s other systems containing data about
speed and turning of the steering wheel. This requirements document
describes the software only.

D. Functional requirements.

1. The system uses GPS information to calculate which map to display. The
system also integrates information about the car’s speed and history of turns
made in order to refine its accuracy about the vehicle’s location.

2. The system has two main interaction modes: in setup mode, the user consults
maps and specifies the destination; in navigation mode, the system assists the
user to navigate to the destination.

3. Setup mode

3.1 When the system is switched on, and the vehicle is stationary, it enters
setup mode. If the vehicle is moving, the system enters navigation mode.
For safety reasons the system cannot enter setup mode when the vehicle
is moving.

3.2 Insetup mode, the system displays a map. The default map is in 1:25000
scale and is centered on the user’s current position. At this scale, the map
covers a square with 2.5 km sides (6.25 km?). Maps are oriented so that
true north is at the top.

3.3 When the user’s current position is within the visible part of the map,
the system always indicates it with a red arrow. The arrow points in the
direction the user is heading.

3.4 The system also displays in orange (computed in real time) the shortest
route (in estimated travel time) from the current position to the center
of the map. It will not be possible to display the entire route if the current
position is not displayed.

3.5 When the user manipulates the trackball, the screen scrolls the map in
the direction of rotation of the trackball, as if the user were grabbing the
map.

3.6 The LCD screen displays the labels “Zoom Out, “Zoom In, ‘Go Current,
‘Go Destination;, ‘Set Destination’ and ‘Navigate’ above the six buttons
(from left to right). The buttons work as follows:

J “Zoom In’ and Zoom Out’ display new maps. The scale of the map
appears at the top right of the screen. There may be a delay
retrieving a map, in which case the system displays the message

158

Chapter 4
Developing requirements

4

a

‘Retrieving map. If the map or network is unavailable for any
reason, the system displays: ‘Sorry, map not available’ near the top of
the screen and continues to display the previous map.

When the user presses Zoom In), the map scale is doubled so that a
smaller region is displayed, with more local detail. The maximum
scale is 1:3125 which means that the map covers an area with
312.5m sides (about 100,000 m?). If this scale is displayed, the
“Zoom In’ button is inoperative and its label appears in light gray.

When the user presses ‘Zoom Out, the map scale is divided by 2 so
that a larger region is displayed, with less local detail. The minimum
scale is 1:102,400,000 which means that the map covers an area with
sides of approximately 10,000 km (about 108 km? or enough to
display entire continents). If this scale is displayed, the Zoom Out’
button is inoperative and its label appears in light gray. Note that the
scales are only approximate due to spherical aberration.

When the user presses ‘Set Destination, the location at the center of
the screen (marked by the end of the orange route) is set as the
destination. The shortest route from the current position to the
destination is highlighted in red and is adjusted as the car moves.

The shortest route to the set destination (red) is shown on top of the
shortest route to the center of the screen (orange), and hence has
precedence.

When the user presses ‘Go Current, the map jumps so that it is
centered over the current location.

When the user presses ‘Go Destination, the map jumps so that it is
centered over the destination. If no destination has been set, the
destination defaults to the current location.

When the user presses ‘Navigate’ or the vehicle starts moving, the
system enters navigation mode described below.

4. Navigation mode
4.1 A detailed map is never displayed in navigation mode since the user
would not be able to concentrate on driving while looking at the map.

4.2 If no destination has been set, the system just displays the name of the
current highway or street and municipality in large type.

4.3 In addition, if a destination has been set, the system displays the
following in as large a size as possible:

a

An arrow pointing up if the driver should drive straight ahead, a left
arrow if the driver should turn left, a right arrow if the driver should
turn right and a U-turn symbol of the driver should turn around.

Section 4.11 | 159
GPS-based Automobile Navigation Assistant (GANA)

J A sentence describing what the user should do, in the following
format: “Turn <turning direction> at <turning landmark>, and head
<heading direction> on <road identification> towards <next
landmark>’. For example: “Turn left at exit 25 and head north on
highway 33 towards Newton. The system computes the turning
direction, turning landmark, heading direction, road identification,
and the next landmark when these are available.

J The destination municipality (or address, if already within the
municipality), the distance remaining, the expected time remaining
and the expected arrival time.

4.4 The turning arrows and instructions are displayed as soon as possible,
as long as they cannot be interpreted ambiguously. A left turn arrow, for
example, would only appear when the driver must take the next left turn.

4.5 The system displays the labels ‘Speak Now’, “Volume Up, “Volume Down,
‘Guide On;, ‘Guide Off” and ‘Setup’ above the six buttons (from left to
right). The buttons work as follows:

J ‘Speak Now’ produces a computer-generated voice, reading the
instructions that are on display. Every time the user presses the
button, any reading in progress is canceled and the instructions are
immediately read again starting from the beginning.

J “Volume Up’ and ‘Volume Down’ adjust sound output.

J ‘Guide On’ causes a computer-generated voice to automatically read
the instructions one minute in advance of any required driver
action, such as exiting the highway, being needed. ‘Guide Off’
cancels this function; the user would have to read the screen or press
‘Speak Now’. In situations where navigational action is required
more frequently than once a minute, the voice reads the next
instruction as soon as the system detects that the driver has
responded to the previous instruction.

J ‘Setup’ switches to setup mode if the car is stationary. If the car is not
stationary, the ‘Setup’ button is grayed out and is inactive.

4.6 If the driver does not respond as expected to the instructions, and takes
a different route, the system immediately calculates a new route.

E. Quality requirements.

1. The system will be robust in the case of failure of the Internet connection or
failure to receive the GPS signal, maintaining whatever service it can.

2. The system will be designed in a flexible way such that changes in wireless
Internet or GPS technology can be incorporated in future releases.

160 Chapter 4

Developing requirements

Exercise

3. The system will be designed anticipating incorporation of input from an
inertial navigation unit that would take over in cases where GPS signals fail.

E7T Perform a requirements review of the GANA system described in this section.

4.12 Requirements for a feature of the SimpleChat instant messaging program

A. Problem. Sometimes a user wants to prevent messages received by a given

client from appearing on his or her screen. This might be because the clients
user is being deliberately annoying, or because the client’s user is sending lots
of public messages that are useful to other users but are not useful to the
current user.

We therefore wish to add a facility to SimpleChat that will allow a given user
to block messages coming from another specified user.

. Background information. See the requirements for SimpleChat Phase 2

(exercises E49-E51 starting on page 104) for the system on which these
requirements are based. The features described in these requirements are part
of Phase 3.

Issues considered:

Issue 1: Can the user block more than one other user at a time?

Decision: Yes; however, he or she will have to issue a sequence of block
commands.

Issue 2: The user needs some way of finding out if he or she has any

blocking in progress, otherwise the user might forget that he or
she had earlier established blocking.

Decision: Add a command called #whoiblock that will list those clients I am
blocking.

Issue 3: It would be useful for a user to know if anyone is blocking
messages that come from him or her.

Decision: Add a command called #whoblocksme that will do this.

Issue 4: Should the server be able to block messages?

Option4.1: Do not allow the server to block messages.

Advantage: This would be simpler.

Option 4.2: The server should be able to block ordinary messages from
clients, but not administrative messages such as #forward etc.

Advantage: This would prevent a malicious user from overwhelming the
server’s display.

Section 4.12 | 161

Requirements for a feature of the SimpleChat instant messaging program

Decision: Choose option 4.2.

Issue 5: What types of messages should the user be able to block?

Option 5.1: Block only private messages, but not public or channel
messages.

Advantages: ~ The user can always avoid public or channel messages by

changing channel.
Disadvantages: Forcing the user to change channel is not really satisfactory —
what if the user is interested in other messages on that channel?
Option 5.2: Block private, public and channel messages.
Decision: Choose option 5.2.

Issue 6: How should this feature interact with forwarding? The
problem: imagine we have clients A, B and C, with A set to
forward all messages to B.

Scenario 6.1: A blocks messages from C: should a message from C to A be
forwarded to B as normal, or should it be blocked?

Decision: Blocked.

Scenario 6.2: B blocks messages from C (but A does not): should a message
from C to A be forwarded to B, or should it be blocked?

Decision: Blocked.

Scenario 6.3: B blocks messages from A (even though A has forwarded
incoming messages to B).

Option 6.3.1: Do not allow the blocking. However, this could be very
annoying for B; after all, it is not B that requested the
forwarding. Maybe the forwarding is just another harassment
tactic of A.

Option 6.3.2: Allow the blocking but continue allowing forwarding. The
problem with this is that the forwarding effectively allows A to
circumvent B’s block.

Option 6.3.3: Cancel the forwarding and establish a block.

Decision: Choose option 6.3.3.

Issue 7: Does it make sense to block messages from myself?

Decision: No.

Issue 8: Can a user block messages from the server?

Decision: Yes.

Issue 9: How does a user unblock messages?

Decision: The #unblock command with no arguments will cancel all

blocking that a user has set up. The #unblock command with an
argument will cancel blocking for messages from that user only.

162 Chapter 4

Developing requirements
Issue 10:

Option 10.1:
Advantages:
Disadvantages:
Option 10.2:
Decision:

Issue 11:
Decision:

Issue 12:

Decision:

Any user could circumvent blocking by logging in using a
different login ID (and automatically creating a password for
the new login ID).

Stop allowing users to create their own login IDs.

Would solve this problem.

Would make the system less useful in a chat environment.
Status quo. Live with this problem.

Choose option 10.2.

Should it be possible to block users who are not even logged on;
and should a block persist even if the blocked user logs off and
logs on again?

Yes, to both questions, because otherwise a user could circumvent
the blocking by logging off and on.

Should a block persist even if the blocking user logs off and logs
on again?

No. For simplicity, we require a user to re-establish any blocks that
he or she desires.

C. Environment and system models. This feature is to be added to Phase 3 of
SimpleChat, at the same time as the forwarding and channels features are
added (see the project exercises at the end of the chapter). There are no
additional environmental considerations for these requirements.

D. Functional requirements:

1. General (applies to client and server alike)

J Commands. Each of these can be issued from the user interface of the
client or server. If issued from the client UI they will be transmitted to
the server unchanged.

#block <user>

J Initiate blocking for any user named <user>, except self.

1 Works whether <user> is connected or not.

1 Displays a message on the originating UI that states:
Messages from <user> will be blocked.

J An attempt to block messages to self will cause the following message
to be displayed:
You cannot block the sending of messages to yourself.

J An attempt to block messages from a user that does not exist will
result in the following message being displayed:
User <user> does not exist.

Section 4.12 | 163

Requirements for a feature of the SimpleChat instant messaging program

J Any number of these commands can be issued to block a series of
users.

] server is a valid user for this command.

#unblock {<user>}

J If an argument is specified, terminates blocking for messages from
<user> that had previously been established by the #block <user>
command.

' When successful, displays the following on the originating UI:
Messages from <user> will now be displayed.

J If #unblock <user> is issued with no preceding #block <user> for the
same user, then displays the following:
Messages from <user> were not blocked.

J When issued with no argument:
1. Cancels any blocking in effect.

2. If blocking had been active, displays the following messages for
each previously blocked user:
Messages from <user> will now be displayed.

J If no blocking had been in effect, displays:
No blocking is in effect.

1 server is a valid user for this command.

#whoiblock

(1 For each user for which this user has issued a #block <user>
command, displays the following message:
Messages from <user> are blocked

J If no users are blocked, then displays:
No blocking is in effect.
#whoblocksme

J For each user that is blocking messages from this user, displays the
message:
Messages to <user> are being blocked.

2. Operation:

2.1 If X blocks messages from Y, this has the following effects, irrespective
of whether X or Y is client or server:

J Any simple message sent by Y will not reach X.

164| Chapter 4

Developing requirements

J Any #private X message sent by Y will not reach X.

J When Y issues the #private X command the following is displayed:
Cannot send message because X is blocking messages from you.

J If Y attempts to forward to X, using #forward X, the forwarding
attempt will be rejected and the following message will be displayed:
Cannot forward to X because X is blocking messages from you.

J If'Y is already forwarding to X, when the block is established, then
forwarding will be terminated and the following messages will be
displayed:

J On X (in addition to the message confirming the establishment
of blocking):
Forwarding of messages from Y to you has been terminated.

J OnY:
Forwarding to X has been canceled because X is blocking messages
from you.

J Unless additional blocking is in effect, all other messages will be
unaffected.

2.2 Blocking persists no matter whether the blocked user logs off or on.
However, if the originator of the blocking logs off, the blocking is
terminated.

E. Other requirements. There are no additional quality, platform or process
requirements for this feature. All such requirements of the base system still

apply.

Exercise

E78 Perform a requirements review of the requirements for the SimpleChat features
described above.

4.13 Difficulties and risks in domain and requirements analysis

B Misunderstanding and lack of understanding of the domain or the real
problem. The software developers may make invalid assumptions and hence
create poor requirements or designs. Even customers or users who are ‘experts’
in the domain may not possess the kind of knowledge that can be easily
communicated to others, and they may define their problem too broadly or too
narrowly.

Resolution. Make good wuse of domain analysis, prototyping and other
requirements gathering techniques to help bring to light any misunderstandings,
and to help clarify the real problem.

Section 4.14 | 165

Summary

B Requirements can change rapidly, resulting in requirements ‘churn’
Requirements always change, and the rate of change is almost by definition
unpredictable. For example, if the requirements are dictated by the open
market, then the launch of competing products might necessitate changing the
requirements to stay competitive. Changes in requirements can result in
completed work being wasted, and can result in a deteriorating design if the
original design did not adequately anticipate the changes.

Resolution. Use an incremental approach to development, build flexibility into the
design, regularly review the requirements and prototypes with the stakeholders,
and, above all, always respect the inevitability of change.

B Attempting to do too much. This occurs when inadequate boundaries have

been placed on the problem or the solution, or when those boundaries are not
respected (resulting in requirements ‘creep’).
Resolution. Use incremental development, and carefully document the problem
boundaries at an early stage. Carefully estimate the time any proposed
requirement will take, using techniques discussed in Chapter 11. Defer major
changes to subsequent releases if possible.

B It may be hard to reconcile conflicting sets of requirements. Different
stakeholders may have very different views about what should be developed.
Resolution. Use brainstorming and JAD sessions to help different stakeholders see
other points of view. Create prototypes of the competing visions; when users
actually compare different prototypes, they may change their preferences.

B It is hard to state requirements precisely. Natural languages, such as English,
are full of ambiguity. Even though everybody thought they had agreed, when
the system is built one group of stakeholders may complain that the system
does not do what they had expected.

Resolution. Break requirements down into simple sentences and review them
carefully, looking for potential ambiguity. Early prototypes can also highlight any
misunderstandings embedded in the requirements.

4.14 Summary

In this chapter we have discussed in detail the process of developing
requirements. It is important to keep developing the requirements throughout
the life of a software system to ensure that they continue to solve the customers’
problems.

We first discussed domain analysis, which enables software engineers to learn
enough about the domain so that they can effectively communicate with the
stakeholders.

We discussed the types of requirements: functional requirements are what the
system will do, while quality, platform and process requirements constrain the
design.

166| Chapter 4

Developing requirements

Next we discussed pinning down a statement of the problem and defining the
system’s scope. Doing this helps ensure that subsequent work is focused and is
less subject to requirements creep.

We looked at various techniques for gathering and analyzing requirements,
including brainstorming, interviewing, prototyping and use case analysis. These
should all be used together. A prototype, in particular, should be seen as a tool
for eliciting requirements. The first system you develop will almost always be
thrown away - it is better that you plan to throw away a prototype, rather than
be forced to throw away a system that you have spent much time developing.

Finally, we gave some guidelines for reviewing requirements documents: the
requirements should be written consistently and clearly, solve the customers’
problem, be cost effective, realistic, verifiable and not over-constrain the design.
It is also important to consider quality, platform and process requirements as
well as functional requirements.

4.15 For more information

Books

Web site

The following are some resources about requirements. Many of the general
software engineering resources from Chapter 1 also contain useful information
about requirements. Use cases are covered by many of the books on UML listed
in Chapter 5.

R. R. Young, The Requirements Engineering Handbook, Artech House, 2003

I. Graham and L. Graham, Requirements Engineering and Rapid Development:
An Object-Oriented Approach, Addison-Wesley, 1998

S. Robertson and]. Robertson, Mastering the Requirements Process, Addison-
Wesley, 2000

D. Kulak and E. Guiney, Use Cases: Requirements in Context, 2nd edition,
Addison-Wesley, 2003

R. Thayer, M. Dorfman and S. Bailin (eds.), Software Requirements Engineering,
2nd edition, IEEE CS Press, 1997

G. Kotonya and I. Sommerville, Requirements Engineering, Wiley, 1998

The Requirements Engineering Specialists Group of the British Computer
Society: http://www.resg.org.uk which has links to many other web resources
on requirements.

Section 4.15 | 167

For more information

Standards

There are many standards covering software engineering — the existence of
standards is an important part of what makes software engineering an
engineering discipline. The following IEEE standards cover requirements
engineering. Organizations that produce standards make money by selling
them, so you cannot, therefore, easily find current ones on the web; however,
your library may subscribe to them. You can find information about them at
www.standards.ieee.org/software/index.html.

M IEEE Standard 830, Recommended Practice for Software Requirements
Specifications

W IEEE Standard 1233, Guide for Developing System Requirements Specifications

Project exercises

In the following two exercises, you will develop some requirements for
extensions to the SimpleChat System that you worked on in Chapter 3. Then you
will implement the requirements and test the resulting system. By implementing
your requirements, you will develop a ‘feel’ for what constitutes a clear or
unclear requirement. We have already presented guidelines for blocking features
- you should use the same format in the first exercise.

E79 Develop both use cases and requirements for features to be added to the
SimpleChat system that would solve the following problems. If you solve all
these problems, you will have completed Phase 3 of SimpleChat.

(a) Anybody with a client program can connect to a server and start sending
messages impersonating somebody else, since there is no password
protection. Hint: there are two completely different solutions to this
problem.

(b) There is no facility to send a private message to a particular user.

(c) It would be nice if instead of all connected users participating in the same
global chat session, separate channels could be established. All messages in
a channel would be broadcast to all other clients in that channel, but not to
clients outside the channel.

(d) A user wants to have somebody else monitor her incoming messages while
she is in a meeting.

E80 Implement the requirements you specified in Exercise E79.

In the following exercises we present a second project, the ‘Small Hotel
Reservation System. As with the SimpleChat project, we propose that this be
based on the Object Client-Server Framework presented in Chapter 3, and we
will ask you to develop additional aspects of the project in each successive

168|

Chapter 4

Developing requirements

ESI

E82

chapter. The main difference from SimpleChat is that this project will involve
more complex object-oriented modeling and design.

We suggest you work in groups of three or four on this project.

The short description of functional requirements for this project is below. On
the book’s web site (www.lloseng.com) we present a fully worked-out example
of a project similar to this. You may choose instead to base your project on one
of the system descriptions in Appendix C.

The goal of this project is to create a system to manage the front-desk
activities of the ‘Interface Rapids Hotel’ You have been contracted to replace the
existing paper-based system, since your customers believe an automated system
will save money and help them to serve guests better. The system will be used to
enter reservations as well as to check guests in and out of the hotel.

The hotel contains rooms in which guests can stay. Some hotel rooms adjoin
others; that is, there are internal doors between them. Each hotel room is
assigned a quality level (e.g. a larger room or a room with a view would be better
than a smaller room without a view). Each room also has a certain number and
type of beds, a room number, and a smoking/non-smoking status. Each quality
level has a maximum daily rate, although the rate that a guest pays may be less.

When a hotel guest wishes to make a reservation, the hotel clerk asks him or
her which nights he or she wants to stay and the type of room he or she wants.
The system must verify if room(s) are available on those nights before allowing
a reservation to be made.

The hotel needs to record basic information about each guest, such as his or
her name, address, telephone number, credit card etc. A reservation can be
canceled at any time but some fees (a percentage of the room price) may be
charged if the cancelation is done too late.

When a guest checks in, a room is allocated to him or her until he or she
checks out. When the customer requests a specific room, this can be allocated
in advance at the discretion of the manager. The system must keep track of the
guest’s account, and print his or her bill.

Perform a domain analysis about hotel reservations. This will help you to
resolve certain ambiguities that might be present in the above statement of
requirements.

Develop a full requirements definition for the above problem. Among the
techniques you should consider employing are the following: interview some
people who run hotels, and take a look at existing front-desk systems; use
brainstorming techniques to refine the requirements; perform use case
analysis, to determine who the actors are and what tasks they must perform. As
you do the above, narrow the problem statement, excluding features that will
not be needed in the first release. Before you complete your requirements
definition, make sure you hold a formal review.

Modeling with classes

UML class diagrams are one of the most important tools for both requirements
analysis and design of object-oriented software systems. These diagrams show the
classes, their attributes and operations as well as the various types of relationships
that exist among the classes. In Chapter 2 we introduced some of the basics of class
diagrams, including attributes, operations and generalizations. In Chapter 3, you
saw some of those elements put together to represent the Object Client-Server
Framework. In this chapter we will examine class diagrams in depth, using several
additional examples.

In this chapter you will learn about the following

B How to properly use the most essential features of UML class diagrams:
classes, associations, generalizations and interfaces.

M The basics of Object Constraint Language (OCL).
M Typical problems you will encounter when modeling with class diagrams.
M A step-by-step process for systematically developing class diagrams.

M Basic techniques for implementing class diagrams in Java.

51 Whatis UML!

The Unified Modeling Language (UML) is a standard graphical language for
modeling object-oriented software. It was developed in the mid-1990s as a
collaborative effort by James Rumbaugh, Grady Booch and Ivar Jacobson, each
of whom had developed their own notation in the early 1990s. The ‘U’ in UML
stands for ‘unified; since its three developers combined the best features of the

170

Chapter 5

Modeling with classes

languages they had each previously developed. The custodian of the UML
standard is the Object Management Group (OMG). In 2004 the OMG approved
version 2.0 of UML.

UML contains a variety of diagram types, including:

Class diagrams, which describe classes and their relationships. These are the
subject of this chapter.

Interaction diagrams, which show the behavior of systems in terms of how
objects interact with each other. In Chapter 8, we will discuss two types of
interaction diagrams: sequence diagrams and communication diagrams.

State diagrams and activity diagrams, which show how systems behave. We will
also present these in Chapter 8.

Component and deployment diagrams, which show how the various
components of systems are arranged logically and physically. We will cover
these in Chapter 9.

UML, however, is much more than just a set of notations for drawing diagrams;
it has the following additional interesting features:

The diagrams you create with it are intended to be interconnected to form a
unified model; we will discuss this more in the next subsection.

It has a detailed semantics, describing mathematically the meaning of many
aspects of its notations.

It has extension mechanisms, which allow software designers to represent
concepts that are not part of the core of UML. We will show some examples of
these mechanismes.

It has an associated textual language called Object Constraint Language (OCL)
that allows you to formally state various facts about the elements of the
diagrams. We will introduce this important topic by way of some examples.

The objective of UML is to assist in software development. It is not a
methodology, because it does not describe, in a step-by-step way, how to do
things. See the sidebar for a discussion of this term.

Why use a standard modeling language?

Some developers have been successful at developing small software systems
without the use of diagrams or other features of modeling languages. However,
as their systems become larger and larger, such developers have an increasingly
difficult time seeing the ‘big picture’ and are liable to create poor designs and
take much longer in their work.

Most systems are therefore documented with the use of diagrams. These
provide views of structure and functionality that would be difficult to grasp by

Section 5.1
What is UML? | 171

‘Methodology’,‘Method’ and ‘Process’

Since the early 1970s, many books have been written describing how software engineers should go
about developing software. The authors variously call their approaches methodologies, methods,
processes or development processes. Ve prefer ‘methodology’ since the other terms can be used in
several different ways.

Most methodologies describe detailed sequences of steps for performing analysis and
design. Many of them require the use of a particular notation, and the production of
documentation in particular formats. Most also describe aspects of project management, and
many are supported by tools developed by the authors of the methodology, or by others.
Some methodologies are publicly available in book form; others must be obtained, at great
expense, by signing a contract with a consulting company.

It is generally a good idea for an organization to follow a specific methodology. By doing
so, all members of the organization follow the same steps and use the same notations. They
can communicate with each other, know what each other is doing, and co-ordinate their
work.

The Rational Unified Process is one of the best known methodologies in wide use today. It
was developed by the same group who developed UML and incorporates UML as its notation.
Agile methodologies, such as eXtreme Programming, also have a wide following.

In the current book, our intent is to give you knowledge that will help you to understand
and work in the context of any methodology.

looking at code or textual descriptions alone. In other words, diagrams provide
abstraction.

A model goes beyond a mere set of diagrams. A model captures an inter-
related set of information about the system: a diagram is simply one view of that
information. Several diagrams can present the same information in slightly
different ways, either with different notations or with different levels of detail. I
can delete an element from a diagram, and keep it in the model; if I delete an
element from the model it should disappear from all diagrams.

A model can lead software engineers to have insights about the system; they
can analyze the model (manually or using tools) to discover problems and other
properties of it. Simple diagrams generated from the model can also help
communicate with clients and users. However, it is up to the modeler to generate
these easy-to-understand views.

Employing UML, a well-defined standard modeling language, adds additional
advantages:

M Since it is a standard notation, everybody who looks at the model will be able to
interpret it the same way.

M There is a wide variety of tools available to build UML models and to enable
simulation, animation and/or generation of code for all or parts of a system.
For details of the most popular tools, see the ‘For more information’ section at
the end of the chapter.

172

Chapter 5
Modeling with classes

History of object orientation - methods and notations

In the 1980s, the object-oriented approach began to become widely accepted in the software
community as a good way to cope with software complexity. At that time, however, object
orientation was applied primarily at the programming level; there was no guidance to software
engineers about how to analyze or design systems in an object-oriented way. As people continued
to develop ever more complex software, systematic approaches to analysis and design were clearly
needed.

At the end of the 1980s and the beginning of 1990s, the first object-oriented
methodologies appeared. Each of these was published as a book and proposed its own
notation for modeling.

Some of the most important contributors in this period were:

M Shlaer and Mellor; who proposed their recursive approach in 1989.
B Rumbaugh, and his colleagues, who published a book about the Object Modeling Technique

(OMT) in 1991.

M Coad and Yourdon, who in 1991 proposed an approach based on prototypes.

M Jacobson,who in 1992 used his work experience to incorporate the idea of use cases into object-
oriented development.

M Booch, a pioneer in object orientation, who presented his method in 1994.

B Martin and Odell, who also wrote a book describing their approach in 1994.

Unfortunately, the proliferation of methods and notations tended to cause considerable confusion.
The initiative of combining their approaches was taken in 1994 by Rumbaugh and Booch at Rational
Corporation (now part of IBM).In 1995, Jacobson joined the team to participate in defining what is
now known as the Unified Modeling Language. These three UML developers are now sometimes
called the Three Amigos.

In 1997 the Object Management Group (OMG) started the process of UML
standardization, a process widely supported by industry. The UML standard is now used by
most software engineers who are performing object-oriented analysis and design.

References to literature about UML and other earlier notations can be found at the end
of the chapter.

52 Essentials of UML class diagrams

Class diagrams describe the data found in a software system. As you learned in
Chapter 2, many of the classes in these diagrams correspond to things in the real
world. For example, in an airline reservation system there would be classes such
as Flight, Passenger and Airport.

The main symbols shown on class diagrams are:

M Classes, which represent the types of data themselves.

B Associations, which show how instances of classes reference instances of other
classes.

B Attributes, which are simple data found in instances.

Section 5.3 | 173

Associations and multiplicity

B Operations, which represent the functions performed by the instances.
B Generalizations, which are used to arrange classes into inheritance hierarchies.

We will start by explaining how to use these symbols properly. In later sections,
we will discuss more advanced features of class diagrams as well as a step-by-
step approach to drawing class diagrams. In the next chapter we will introduce
common patterns found in class diagrams.

Classes
A class is represented as a box with the name of the class inside. As discussed in
Chapter 2, the name should always be singular and start with a capital letter.
When you draw a class in a class diagram, you are saying that the system will
contain a class by that name, and that when the system runs, instances of that
class will be created.

Optionally, the class diagram may also show the attributes and operations
contained in each class. This is done by dividing a class box into two or three
smaller boxes: the top box contains the class name, the next box lists attributes,
and the bottom box lists operations. If you do not want to specify attributes or
operations, then you simply omit the box.

Figure 5.1 illustrates how a class can be drawn at several different levels of
detail. How much detail you show depends on the phase of development and on
what you wish to communicate. In the leftmost example, only the class name is
shown, indicating merely that the class exists. Additional detail is shown in the
other four representations of the same Rectangle class. The most detail, including
the type of attributes, whether the feature is public (+) or private (-), and the
signature of operations, is shown in the rightmost example. When shown in full
detail, an operation’s signature is specified using the following notation:
operationName (parameterName: parameterType,...): returnType.

Rectangle Rectangle Rectangle Rectangle Rectangle

getAreal) height height — height: int
resize() width width — width:

getAreal() + getArea(): int
resize() + resize(int,int)

Figure 5.1 The Rectangle class at several different levels of detail
5.3 Associations and multiplicity

An association is used to show how instances of two classes will reference each
other. The association is drawn as a line between the classes.

Symbols indicating multiplicity are shown at each end of the association. The
multiplicity indicates how many instances of the class at this end of the
association can be linked to an instance of the class at the other end of the

174| Chapter 5

Modeling with classes

Figure 5.2

Employee [* ! Company

* L Manager

]
i

’ AdministrativeAssistant

Company 1 1! BoardOfDirectors

]

Office 91 * Employee

i
|

03.8 * BoardOfDirectors

Examples of possible multiplicities

association. Figure 5.2 gives some examples of associations, showing their
multiplicity.

A multiplicity of 1 indicates that there must be exactly one instance linked to
each object at the other end of the association. For example, there can only be
one Company associated with each Employee in Figure 5.2.

A very common multiplicity is *, which is normally read as ‘many’, and means
any integer greater than or equal to zero. In Figure 5.2, for example, many
employees can be associated with a company; one possibility being that a
company has no employees. Although there is no theoretical upper bound, there
is a practical upper bound that depends on the amount of memory and
processing capacity available.

If there can be either zero or one object linked to an object at the other end of
the association, then the multiplicity is said to be ‘optional; and the notation 0..1
is used. So, for example, Figure 5.2 shows that there can be zero or one office per
employee. In other words, it is optional that an employee is assigned to an office
(some may work at home or in a job that does not require an office).

You can also specify the multiplicity to be an interval, which is shown as two
dots between the lower and upper bound. An interval is also sometimes called
a range. If, for example, you determine that a sailboat can have between 1 and 3
masts, then you would write 1..3 on the Mast end of the association. The 0..1
notation discussed above is a special case of an interval. If an interval has no
upper bound, then you use the asterisk; therefore 0..# and * mean the same
thing, while 1..* means ‘at least one’

The multiplicity can be a specific positive integer; and you can also specify
several multiplicity values or ranges separated by commas. For example,
imagine that the law in some jurisdiction states that a board of directors must
have between three and eight members. Furthermore, if the board finds itself
with insufficient members, then it is automatically dissolved and new elections
must be held - during the election process, the board has zero members. The
multiplicity of the final example in Figure 5.2 reflects this situation: there can be
either zero, or between 3 and 8 persons on a Board0fDirectors.

Specific multiplicities involving intervals or exact numbers greater than two
are not common, and should only be specified after careful thought. For

Section 5.3 | 175

Associations and multiplicity

example, you might be tempted to specify that a person should always have
exactly two parents. However, if you do so, then you are requiring that the
system always have a record of everybody’s two parents. Adhering strictly to
such a rule would be impossible because not everybody knows who their
parents are, and also because the system would have to know the parents of the
parents, ad infinitum. A more reasonable multiplicity for parents might be 0..2.

If you do not specify the multiplicity of an association end, then it is said to be
undefined. We strongly recommend never leaving a multiplicity undefined,
since much of the meaning of a class diagram comes from the multiplicities. In
some earlier versions of UML, leaving the multiplicity blank meant it should be
interpreted as ‘one’ rather than undefined; you may see some older diagrams
using this convention.

Labeling associations
Each association can be labeled, to make explicit the nature of the association.
There are two types of labels, association names and role names. Figure 5.3
shows the same associations as in Figure 5.2, but with labels added.

Employee s worksFor 1

Company

]

il

R 1.3k

’ AdministrativeAssistant -
supervlsor

Manager

U BoardOfDirectors

Company !

Office 0.1 allocatedTo *

]

Employee

03.8 * -
Person TP BoardOfDirectors

i
|

Figure 5.3 The associations of Figure 5.2, but with some association names and role names
added

An association name should be a verb or verb phrase, and is placed next to the
middle of the association. One class becomes the subject and the other class
becomes the object of the verb. For example, the association between Employee
and Company is called worksFor. You can read the association in one direction as,
‘an employee works for a company’ The direction to read the association is
normally obvious, but can be clarified by showing a little arrow (a filled triangle)
next to the association name (as in the fourth association in Figure 5.3).

Another way of labeling an association is to use a role name. Role names can
be attached to either or both ends of an association. A role name acts, in the
context of the association, as an alternative name for the class to which it is
attached. For example, in the association between Person and Board0fDirectors,
boardMember is a role name that describes the people who happen to be members
of the board. You can read this association as, ‘a board of directors has either
zero or 3 to 8 persons as board members.

176]

Chapter 5

Modeling with classes

If you omit both the association name and role names, then consider that an
associations name is simply has, by default. This is not very informative, but in
some cases it is adequate, since the meaning of the association might be clear by
simply looking at the two classes. For example, in the association between
Company and BoardOfDirectors, we have chosen not to add any label; the
association would read, ‘a company has a board of directors.

A good rule of thumb when performing analysis is: add sufficient names to
make the association clear and unambiguous. It is normally not necessary to add
both role names and an association name to the same association. For example,
we could have added a role name employer next to Company in the first association
of Figure 5.3; however, the association name worksFor is sufficient. We could also
have chosen here to use the role name instead of the association name.

Analyzing and validating associations

It is very common to make errors when creating associations - it is particularly
easy to get the multiplicity wrong. Therefore you should get into the habit of
reading every association in both directions to verify that it makes sense. Most
importantly, you should always ask yourself whether a less restrictive
multiplicity could also makes sense in some circumstances. By less restrictive,
we mean using ‘many or ‘optional’ instead of ‘one’ or some other specific
number.

In general, you should err on the side of being less restrictive so as to increase
the flexibility of the system. For example, restricting the number of people who
supervise an employee to ‘one’ would make it hard to introduce a ‘matrix
management’ system, in which a person can have multiple supervisors. On the
other hand, using ‘many, as opposed to ‘one, when it is not justified, will
increase a system’s complexity and reduce its efficiency.

The following points discuss three of the most common patterns of
multiplicity, each of which is illustrated in Figures 5.2 and 5.3.

One-to-many. A company has many employees, but an employee can only
work for one company. You might argue that this is incorrect, since somebody
might moonlight, working for several companies. However, company policy
might explicitly disallow moonlighting in companies managed by our system.
This multiplicity pattern correctly indicates that a company can have zero
employees, as in the case of a ‘shell’ company. Finally, since it is not possible to
be an employee unless you work for a company, the multiplicity at the Company
end is correctly shown to be exactly one, not optional.

Many-to-many. An administrative assistant can work for many managers, and
a manager can have many administrative assistants. Of course, a one-to-one
relationship would be typical between any particular administrative assistant
and manager, but in general there are assistants who work for a group of
managers, and managers who are so senior that they have a group of assistants.
It is also the case that some managers might have zero assistants. An interesting

Section 5.3 | 177

Associations and multiplicity

question arises when you consider whether it is possible for an assistant to
have, perhaps temporarily, zero managers. We have decided in Figures 5.2
and 5.3 not to allow this, and to require the system to ensure that at all times at
least one manager supervises each administrative assistant.

B One-to-one. For each company, there is exactly one board of directors. Also, a
board is the board of only one company. A company must always have a board,
and a board must always be of some company. What would happen if the board
members all resigned? We would still say that the board exists, but temporarily
has zero members.

The most common multiplicity pattern is one-to-many. The next most common
is many-to-many. Together, these two patterns account for the vast majority of
associations. Later on we will see how a many-to-many association can be split
into two one-to-many associations.

One-to-one associations are less common. When you see such an association,
you should ask yourself if in fact one or both ends should be changed to
‘optional’ or ‘many. The implication of a one-to-one association is that
whenever you create an instance of one of the classes, you must simultaneously
create an instance of the other; and when you delete one you must delete the
other. If there is a true one-to-one association, you might also consider whether
it is an aggregation, discussed later.

A common error is to create a one-to-one association between two classes,
where the two classes should really be one. For example, in Figure 5.4 Person and
PersonInfo should become a single Person class, with the attributes of PersonInfo
transferred to Person.

Person Personinfo Person
1 1
name address name
email address

birthdate email

birthdate

Figure 5.4 An inappropriate one-to-one association (left), and a corrected model showing a
single class (right)

Figure 5.5 illustrates a possible multiplicity pattern involving three classes.
Let’s look in detail at its semantics. We can tell that for each Booking there must
always be exactly one Passenger, but each Passenger can have any number of
Bookings (i.e. on different flights and dates). Similarly, for each Booking there must
always be exactly one SpecificFlight, but each SpecificFlight can have any
number of Bookings (up to the capacity of the aircraft, of course).

We will read and analyze the left association in Figure 5.5 in the following two
directions:

178| Chapter 5

Modeling with classes

Figure 5.5

Booking passengers on flights)
’ Passenger }]—*{ Booking }*—]{ SpecificFlight ‘

Associations related to booking passengers on a flight

M ‘A Booking is always for exactly one Passenger’

This means there could never be a booking with zero passengers. Does this
seem correct? Yes. After all, it would not make sense to have a booking if we did
not know who the booking was for. From this information we can also conclude
that to create a Booking, either we must have previously created the Passenger, or
else we must create it at the same time as the Booking.

The above association also implies that a Booking could never involve more

than one Passenger. Is this really what we mean when we

Diagram frames and labels think of a booking? The answer is not so clear and hence
Figure 5.5 has a frame around it witha requires careful thought. You might imagine an entire
label ‘Booking passengers on flights’ in family sharing a single Booking to fly to some vacation
the top-left corner. This is an optional ~ spot. On the other hand, the alternative shown in Figure
feature that any UML 2.0 diagram may 5.5 is that each member of the family has his or her own
possess. We have shown it here to Booking. This alternative provides more flexibility since
illustrate its use; we will leave it off all it allows any member of the family to change itinerary
other diagrams in this book. without affecting the others.

Exercises

B ‘A Passenger can have any number of Bookings’

E83
E84

This statement says that a passenger could have no bookings at all. Does this
seem reasonable? Again, to answer this might need further requirements
analysis. One possibility is that we might not want to waste space storing
information about a passenger who does not have any bookings — hence we may
decide always to delete a passenger if he or she has just one booking and cancels
it. If this is our decision, then the multiplicity can be changed from * to 1..x. If
we make this change, then whenever we add a new passenger, we will have to
add their first booking simultaneously.

On the other hand, it might be convenient to be able to add some passengers
to the system and then later on to go back and add bookings. Therefore we will
conclude that allowing a Passenger to exist without a Booking is acceptable and
leave the multiplicity at *.

Can a passenger have more than one booking? Yes, since it is easy to imagine
somebody arranging a whole series of flights.

Discuss other multiplicities that could have been considered in Figure 5.5.

Create two or three classes linked by associations to represent the situations
below. Take care to specify appropriate multiplicity, as well as labels for the

Section 5.3 | 179

Associations and multiplicity

associations. If there is more than one reasonable alternative, explain the
advantages and disadvantages of each.

(a) Racing with vehicles and drivers.

(b) A video rental shop, where you must purchase a membership before
renting anything.

(c) Alandlord renting apartments to tenants.

(d) A student taking courses in a school.

(e) A professor teaching courses in a university.

(f) An author writing books distributed by publishers.

(g) A repertory theater company planning presentations of various plays.

E85 Explain the consequences of the associations in Exercise E84 in terms of the
creation and destruction of instances. Think about the order in which instances
can be created or destroyed.

E86 For each of the associations you created in Exercise E84, write a few sentences
showing how you would read the association in both directions.

Association classes
In some circumstances, an attribute that concerns two associated classes cannot
be placed in either of the classes. For example, imagine the association shown in
Figure 5.6, in which a student can register in any number of course sections, and
a course section can have any number of students. In which class should the

student’s grade be put?
Student % isRegiseredin * CourseSection
Figure 5.6 A many-to-many association. The ‘grade’ attribute can be put in neither class

If you put the grade in the Student class, then a student could have only one
grade, not one per course section. If you put the grade in the CourseSection class,
then a course section could have only one grade, not one per student. The grade
is therefore not a property of either class.

The solution to this problem is to create an association class to hold the grade.
As shown in the left half of Figure 5.7, an association class is connected to its
association by a dashed line. In this example, the new class is called Registration;
in general, an association class should be named using a noun that reflects the
meaning of the association; the association name is then no longer needed.

Aside from being attached to an association, an association class is no
different from any other class. In particular, it can have subclasses and other
associations connected to it.

180

Chapter 5

Modeling with classes

Figure 5.7

*
*

Student X CourseSection Student Registration | 1| CoyrseSection

. grade

Registration

grade

A many-to-many association with an association class, and an equivalent diagram
using two one-to-many associations

Any time you see a many-to-many association, you should consider
whether an association class is needed.

The diagram in the left half of Figure 5.7 can be transformed into the
diagram in the right half, which uses only one-to-many associations. Any pair
of classes, linked by a many-to-many association with an association class, can
be transformed in this manner. Pay special attention to the positions of the
‘many’ multiplicities before and after the transformation.

Both halves of Figure 5.7 would be implemented the same way. Sometimes,
though, the left version is clearer since it emphasizes the importance of the
relationship between Student and CourseSection. At other times, the right
version can be easier to read, since no special notation is needed.

Note that Figure 5.5 can also be transformed such that it uses an association
class, since it follows the pattern in the right half of Figure 5.7.

The fact that an association class has two many-to-one associations means
that to create an instance, you must already have instances of the two
associated classes.

Reflexive associations

Figure 5.8

It is possible for an association to connect a class to itself. Two examples of this
are found in Figure 5.8. A course can require other prerequisite courses to be
taken first. If two courses cover nearly the same material, taking one of them
may preclude a student from taking the other, and vice versa — such courses
are said to be mutually exclusive. The first association is asymmetric, since the
roles of the classes at each end are clearly different. The second, on the other
hand, is symmetric. To make the meaning clear, you should label an
asymmetric reflexive association using role names instead of an association
name.

ki
% Course isMutuallyExclusiveWith

successor

B

prerequisite

Two examples of reflexive associations

Section 5.3 | 181

Associations and multiplicity

Exercise

E87 Add association classes to the three many-to-many associations in Figure 5.9.

(a) Player SportGame

(b) Spectator * * Show

(c) Guest = X HotelRoom
Figure 5.9 Three many-to-many associations for Exercise E87

E88 Add association classes to the two many-to-many associations in Figure 5.8.
Show the attributes that might be found in these association classes.

E89 Apply the transformation shown in Figure 5.7 to your answer to the previous
exercise.

Links as instances of associations
In the same way that we say an object is an instance of a class, we say that a link
is an instance of an association. Each link connects two objects — an instance of
each of the two classes involved in the association. For example, in Figure 5.5,
there will be one link of the Passenger-to-Booking association for every Booking.

Directionality in associations
Associations and links are by default bi-directional. That is, if a Driver object is
linked to a Car object, then the Car is also implicitly linked to that Driver. If you
know the car, you can find out its driver - or if you know the driver, you can find
out the car.

It is possible to limit the navigability of an association’s links by adding an
arrow at one end. For example, Figure 5.10 shows two classes that might exist in
a calendar application. The user of this application can associate any number of
written notes with any day. An instance of class Day would need to know about
the instances of Note associated with it; but it is not expected that if you have a
Note, there will be any need to determine the Day to which it belongs.

Note

Day

Figure 5.10 A unidirectional association

Decisions about directionality should normally be deferred to later phases of
development, when the detailed design is created. Making associations
unidirectional can improve efficiency and reduce complexity, but might also
limit the flexibility of the system.

182| Chapter 5

Modeling with classes

54 Generalization

We discussed generalization in Chapter 2, and presented several examples. You
will remember that they are represented using a small triangle pointing to the
superclass. They must follow the isa rule, and several other rules as well. Here,
we will present some more issues to consider when creating generalizations.

Avoiding unnecessary generalizations

Figure 5.11

A common mistake made by beginners is to overdo generalization. Figure 5.11
shows a taxonomy of different types of products that might be sold by a music
store. However, to justify the existence of each class, there must be some
operation that will be done differently in that class. In the case of Figure 5.11, it
would be hard to imagine that there would need to be different methods written
for most of the classes. For example, JazzRecording, ClassicalRecording and
BluesRecording would not differ with regard to how they are sold, nor with regard
to what kinds of information clients can find out about them.

/\
/\ /\
[
’ MusicVideo ‘ ’ JazzRecording HCIcssicaIRecordingH BluesRecording H RockRecording ‘

A hierarchy of classes in which there would not be any differences in operations.
This should be avoided

A better way to model the information in Figure 5.11 is to create a class
diagram such as that in Figure 5.12 (a). Most of the classes from Figure 5.11 now
become instances of RecordingCategory, and the hierarchy itself becomes a
hierarchy of instances, as shown in Figure 5.12 (b). In fact, Figure 5.12 (b) is an
example of an object diagram — we will discuss these further shortly.

Handling multiple generalization sets

Discriminators
In earlier versions of UML,
generalization set labels were
called discriminators. That term
is now obsolete.

A generalization set is a labeled group of generalizations with a common
superclass; the label describes the criteria used to specialize the superclass into
two or more subclasses. It is clearest to unite all the
generalizations in a set using a single open triangle. You place
the label next to the open triangle.

Two examples of generalization sets, as used in a zoology
program, are shown in Figure 5.13. Animals can be divided up
by habitat into aquatic and land animals, or by type of food, into
carnivores and herbivores.

Figure 5.12

Figure 5.13

:RecordingCategory

label="video"”

subcategory

Recording

title
artist

subcategory

category

label

1
RecordingCategory :I
kS

subcategory

a)

:RecordingCategory

label="audio”

subcategory /

\ subcategory

Section 5.4
Generalization

subcategory

1183

:RecordingCategory

:RecordingCategory

:RecordingCategory

:RecordingCategory

:RecordingCategory

artist="Beethoven”

label="music video” || label="jazz" label="classical” label="blues" label="rock”
category category
:Recording :Recording
title="9th Symphony” title="Let it be”

artist="The Beatles”

(b)

(a) Modeling a taxonomy of products using a single class, and (b) an object diagram
generated from this

A habitat

A typeOffood

’ AquaticAnimal

’ LandAnimal ‘ ’ Carnivore H Herbivore ‘

Two generalization sets

The label of a generalization set will typically be an attribute that has a
different value in each subclass. As discussed above, there must also be other
differences in the features of the subclasses in order to justify their existence —
these differences could be attributes, operations or associations. For example, a
Carnivore may have a prey association, an attribute describing its huntingStrategy,
and operations to manipulate this data.

Situations like Figure 5.13, where there is more than one possible
generalization set sharing the same superclass, pose interesting modeling
challenges. If you were to include both generalization sets in the same model,
then a problem would arise in implementation environments such as Java: if an
animal was an AquaticAnimal, it could not also be a Carnivore. Figure 5.13 would
therefore make it hard to represent aquatic carnivores such as sharks. This
problem leads us to search for a way to enable animals to have all possible
combinations of habitat and type of food.

One solution, shown in Figure 5.14, is to create a higher-level generalization
set (here habitat), and then to have generalization sets with duplicate labels at a

184| Chapt.er 5

Modeling with classes

Figure 5.14

Figure 5.15

lower level in the hierarchy. The drawback to this is that all the features
associated with the second generalization set would also have to be duplicated.
For example, you would have to provide a prey association for both
AquaticCarnivore and LandCarnivore. Another problem with this solution is that
the number of classes can grow very large. If you wanted to add omnivores, you
would have to add both Aquaticomnivore and Landomnivore. Figure 5.14 therefore

is not an ideal solution.
A habitat

| AquaticAnimal | LandAnimal |

typeOffood E ; typeOffood E ;

’AquoﬁcCarnivore‘ ’AqucﬁcHerbivore‘ ’ LandCarnivore‘ ’ LundHerbivore‘

Allowing different combinations of features by duplicating a generalization set
label at a lower level of the hierarchy. Duplication like this should be avoided

Another possible solution, using multiple inheritance, is shown in Figure 5.15.
This approach uses even more classes and generalizations but avoids duplication
of features. However, multiple inheritance generally adds too much complexity.
This example illustrates one reason why it should normally be avoided; a second
reason is that multiple inheritance does not exist in Java.

Animal
habita typeOffood

|AquahcAn|ma|| LandAnlmdl | Carnlvore | | Herbivore |
’AquaricCarnivore‘ ’Aquatherblvore‘ ’ LandCarmvore‘ ’ LandHerbivore‘

Allowing different combinations of features by using multiple inheritance. This is
complex and should be avoided

In the next chapter, we will discuss the player-role pattern, which provides a
superior solution to the problem of multiple generalization sets.

Avoiding having objects change class

Another issue that can arise when creating generalizations is avoiding the need
for objects to change class. In general, an object should never need to change

Section 5.4 | 185

Generalization

class. In most programming languages, changing class is simply not possible;
therefore you have to completely destroy the original object and create a new
instance of the second class. This is complex and error prone because you have
to copy all the instance variables and make sure that all links that connected to
the old object now connect to the new one.

The need for an object to change class is illustrated in Figure 5.16. It is clear
that during his or her studies, the attendance status of a student can change from
full-time to part-time and vice versa. You do not want to model this situation in
your system by destroying a PartTimeStudent and creating a FullTimeStudent, or
the opposite, each time the student’s status changes. For this reason Figure 5.16
is a poor model. A possible solution is simply to make attendanceStatus an
attribute of Student and to omit the two subclasses completely. The problem with
this is that we lose the advantage of polymorphism for any operations that
would differ in PartTimeStudent and FullTimeStudent. The player-role pattern,
discussed in the next chapter, can again provide a better solution.

A attendance
[]
FullTimeStudent ‘ ’ PartTimeStudent

Figure 5.16 A situation in which objects will need to change class from time to time.
Generalizations of this type should be avoided

Exercise

E90 Draw a class diagram corresponding to the following situations.

(a) An organization has three categories of employee: professional staff,
technical staff and support staff. The organization also has departments
and divisions. Each employee belongs to either a department or a division
Assume that people will never need to change from one category to
another.

(b) A grocery store has some items sold by weight, and some per unit. Some
items are taxable, while others are not. Some items have special prices when
sold in groups (e.g. 3 for $2). Finally, some items have special prices if you
have certain ‘membership cards. There could be several different
membership prices on the same item, but you can only use one
membership card per purchase.

(c) A media player that can handle sound, images and sequences of images.
Each type of media requires a ‘plugin; although some plugins can handle
more than one type of media.

186| Chapter 5

Modeling with classes

55 Object diagrams

Figure 5.17

Class diagrams tell us what classes will exist in a given system, but they are quite
abstract. Sometimes it can be hard to visualize the relationships among the
objects that will exist at run-time.

An object diagram shows an example configuration of objects and links that
may exist at a particular point during execution of a program. Objects are shown
as rectangles, just like classes; the difference is that the name of the class is
underlined and preceded by a colon,:Employee, for example. You can also give a
name to each instance before the colon, as in Pat : Employee, or even omit the class
name entirely if it is clear from the context, such as Pat:.

A link between two objects is shown as a simple line. You can imagine that
each of the two objects contains a pointer to the other object joined by the link.
The reality can be a little more complex than this, but while we are doing
analysis, a simple vision suffices.

It is important to understand the relationship between a class diagram and an
object diagram. A class is an abstract representation of all the instances of that
class that can ever exist. Similarly, an association represents all the links between
two classes that can ever exist. It should be clear from this that while we put
multiplicity symbols on associations, we never put them on links.

We say that a given object diagram is generated by a class diagram. This means
that it contains instances and links of the classes and associations present in the
class diagram. It also means that the numbers of links among instances are
consistent with the multiplicity of that class diagram. A class diagram can
generate an infinite number of object diagrams.

We have already used an object diagram in Figure 2.2 to represent examples
of instances, including their attributes.

Figure 5.17 shows object diagrams generated from two of the class diagrams
of Figure 5.3.

Pat:Employee

Wayne:Employee
™~ OOCorp:Company OOCorp's Board:

Ali:Employee

Carla:Employee UML inc:Company UML inc’s Board:

Terry:Employee

Object diagrams generated from class diagrams

Section 5.5 | 187

Object diagrams

Odds and ends about object diagrams

Object diagrams are sometimes called instance diagrams. There has been a tendency for some
people to speak about object diagrams when they mean class diagrams. The term ‘instance diagram’
prevents this confusion even though it is not standard UML.

Most tools for drawing UML diagrams do not provide facilities for drawing object
diagrams. This is because class diagrams contain an abstract view of the system that is much
more information-rich and is always necessary, whereas object diagrams are less commonly
used, and then only to analyze specific scenarios.

Associations versus generalizations in the context of object diagrams

It is a common mistake for beginners to think of generalizations as special
associations. This misconception arises because both generalizations and
associations connect classes together in a class diagram.

However, the differences between the two concepts are profound.

B An association describes a relationship that will exist between instances at run-
time.

M A generalization describes a relationship between classes in a class diagram.

An object diagram can never contain a generalization, and can only contain
links generated by associations, not the associations themselves.

When you show an object diagram generated by an association, you show
instances of both classes joined by that association. On the other hand, when you
show an object diagram generated by an inheritance hierarchy, you show a single
instance of one of its concrete classes. That single instance will contain values of
the attributes defined in its class, as well as those attributes inherited from
superclasses. In other words, an instance of any class should also be considered
to be an instance of each of that class’s superclasses.

Exercise

E9| Draw a class diagram that could generate the object diagram shown in
Figure 5.18. Make reasonable choices for multiplicity.

E92 Write a sentence describing a specific situation, with actual instances, for the
class diagrams of Exercise E84. Then draw the corresponding object diagram.
Make sure that each diagram is compatible with its underlying class diagram.

E93 Draw an example object diagram compatible with the class diagrams of
Exercise E90.

188 | Chapter 5

Modeling with classes

Figure 5.18

isMemberOf

United Nations:

Canada:)
isMemberOf~] France: = [TispartOf .
— Ontario:
isMemberOf ;
isMemberOf isPartOf borders
isMemberOf
isMemberOf NATO: borders
borders M
isMemberOf
borders

New York State:

borders isPartOf

Mexico: ™————— United States: [

Object diagram for Exercise E91

5.6 More advanced features of class diagrams

Aggregation

Figure 5.19

The notations described in Sections 5.2 to 5.4 are the most important aspects of
class diagrams. In this section, we describe additional features for adding more
specific information to the diagrams. It is important to be able to understand the
meaning of these features in class diagrams, but most modeling, especially at the
analysis level, can be done without them.

Aggregations are special associations that represent ‘part-whole’ relationships.
The ‘whole’ side of the relationship is often called the assembly or the aggregate.

As Figure 5.19 shows, aggregations are specified using a diamond symbol,
which is placed next to the aggregate. This symbol is a shorthand notation that
saves you from having to write an association name such as isPartOf or its
inverse hasParts. Many aggregations are one-to-many, but this is not a
requirement.

o oot g |
g |

Building] *

Some examples of aggregation. The third example is a strong aggregation called a
composition

Section 5.6 | 189

More advanced features of class diagrams

When to use an aggregation instead of an ordinary association has always
been a source of confusion. As a general rule, you can mark an association as an
aggregation if the following are true:

B You can state that the parts ‘are part of” the aggregate, or the aggregate ‘is
composed of” the parts.

B When something owns or controls the aggregate, then they also own or control
the parts.

For example, the parts of a vehicle are clearly in an aggregation relationship with
the vehicle. The other two associations in Figure 5.19 are also legitimate
aggregations. On the other hand, the members of a club are not in an
aggregation relationship with the club. It might sometimes be possible in
English to say that a person is part of a club, but the owner of the club does not
own the members.

A composition is a strong kind of aggregation in which if the aggregate is
destroyed, then the parts are destroyed as well. A composition is shown using a
solid (filled-in) diamond, as opposed to an open one. The parts of a composition
can never have a life of their own; they exist only to serve the aggregate. For
example, as shown in the bottom example of Figure 5.19, the rooms of a building
cannot exist without the building. In ordinary aggregations, on the other hand,
the parts can exist on their own. For example, the engine can be taken out of one
vehicle and placed in another, or a region can secede from one country and
become independent.

A one-to-one composition often corresponds to a complex attribute. You can
therefore show it as an attribute or, if you want to emphasize the details of the
composed class, you can show it as a composition. Figure 5.20 illustrates a
situation where an attribute has been expanded into an associated class. Such
compositions are normally unidirectional, as shown here.

Employee Employee] L Address

address: Address street
municipality
region
country
postalCode

Figure 5.20 The address of an employee represented as an attribute or as a composition

Unlike other associations, UML allows aggregations to be drawn as a hierarchy,
as shown in Figure 5.21. The use of such hierarchies in valid models is quite rare,
however. Figure 5.21 is a much less flexible way to model vehicle parts than the
first diagram, Figure 5.19. This is because Figure 5.19 can more easily
accommodate new types of vehicles that have different configurations of parts.

Marking a part-whole association as an aggregation using the diamond
symbol is optional. Leaving it as an ordinary association is not an error, whereas

190| Chapter 5

Modeling with classes

Figure 5.21

Example 5.1

1
[1 ® |
| Chassis | | BodyPanel | | Door |

1
[[[1 |

| Frame Engine Transmission Wheel |

An aggregation hierarchy

marking a non-aggregation with a diamond is an error and can cause confusion.
Therefore, as a general rule of thumb: when in doubt, leave it out.

An advantage of explicitly identifying aggregation is that it provides useful
information to the designer. In particular, the designer can improve the
encapsulation of the system by arranging for the part objects to be hidden inside
the aggregate object. Methods in the system would be able to perform most
operations on the aggregate, without needing to know about the existence of the
parts. For example:

An operation to register the sale of a vehicle would only need to record the new
owner of the aggregate. There would be no need to also record the new owner
of all the parts, since if any subsequent query were made about the ownership
of a part, the part could simply return the owner of the aggregate.

An operation to delete an aggregate could automatically delete the parts.

An operation to change the thickness of the outline of a shape might work by
simply changing the thickness of all of the line segments that compose the
shape.

The last two examples illustrate a mechanism called propagation that is often
present in aggregations. Under this mechanism, an operation in an aggregate is
implemented by having the aggregate perform that operation on its parts - in
other words, the operation is propagated to the parts. At the same time, this
process often results in the features of the parts being propagated back to the
aggregate. For example, the weight of an aggregate could be obtained by
summing the weights of its parts.

In a sense, we can say that propagation is to aggregation as inheritance is to
generalization. However, the major difference is that inheritance is an implicit
mechanism, whereas propagation has to be programmed when required.

Justify the use of a composition to represent the association between a polygon
and its line segments, as in Figure 5.22.

Section 5.6 | 191

More advanced features of class diagrams

Figure 5.22 Composition example for Example 5.1

The justification is as follows:

B A polygon is composed of line segments.

An object that manipulates a polygon also manipulates the line segments.

B When the polygon is translated or scaled, the line segments are also translated
or scaled.

B The perimeter of the polygon is computed as the sum of the lengths of all the
line segments.

B Removing a line segment from a polygon would mean that the polygon is no
longer a polygon, therefore the polygon must have complete control to prevent
such a change.

B The line segments are deleted when the polygon is deleted.

Exercise
E94 For each of the following associations, indicate whether it should be an
ordinary association, a standard aggregation, or a composition.
(a) A telephone and its handset.
(b) A school and its teachers.
(c) A book and its chapters.
Interfaces

As discussed in Chapter 2, an interface is similar to a class, except it lacks
instance variables and implemented methods. It normally contains only abstract
methods although it may also contain class variables. We can say that an
interface describes a portion of the visible behavior of a set of objects.

In UML, there are two ways to specify interfaces, both of which are shown in

Figure 5.23:
«interface»
Person Cashier Machine Person Machine
withdraw()
Zﬁ deposit() Zﬁ % CcéSer Zﬁ CGESer
Employee ---------- R ATM Employee ATM

Figure 5.23 Two ways of showing the cashier interface

192|

Chapter 5

Modeling with classes

B As a small circle (like a lollipop), labeled with the name of the interface.

B As a class rectangle, with the expression «interface» at the top, and (optionally)

a list of supported operations. The «interface» notation is an example of a
stereotype in UML. A stereotype is a way to use some of the standard UML
notation (here a class box) to represent something special (here an interface).
Note that the « and » symbols are called guillemets; they should preferably be
written using the special characters available in most fonts, not using pairs of
less-than or greater-than signs.

In some programming languages, interfaces are simply created using
superclasses containing only abstract methods. But interfaces should not be
confused with generalizations since the basic relation is not the same. We have
already mentioned that generalization is characterized by an isa relationship
between a subclass and a superclass. In the case of interfaces, the relationship
between the implementing class and the interface can be described as ‘can-be-
seen-as.

Figure 5.23 shows classes representing bank employees and automatic teller
machines; both can be seen as a sort of cashier. That is, it is possible to interact
with one or the other in order to deposit or withdraw money. However, although
Employee and ATM share common operations, they have different superclasses.
This means that they cannot be put in the same inheritance hierarchy; therefore
an interface called Cashier is used.

A key advantage of using interfaces is that they reduce what is called the
coupling between classes. We will discuss this in detail, with an example, in
Chapter 9.

Constraints, notes and descriptive text

Very often, in a class diagram, you want to say more than the graphical UML
notation readily allows. There are three ways in which you can add additional
information to a UML diagram:

Descriptive text and other diagrams. It is highly recommended to embed
your diagrams in a larger document that describes the system more fully. Such
text can explain aspects of the system using any notation you like. It is best not
to repeat what is shown in the UML diagrams, but you can highlight and
expand on important features, and give rationale for why certain decisions
were made.

Notes. In contrast to the descriptive text described above, a note is a small
block of text embedded in a UML diagram. The box has a ‘bent corner’ The
note can explain a detail, and acts like a comment in a programming language.
Figure 5.24 shows an example note, explaining the purpose of the class
LinearShape.

Constraints. A constraint is like a note, except that it is written in a formal
language that can be interpreted by a computer. In a UML diagram, a

Section 5.7
The basics of Object Constraint Language (OCL) | 19 3

{edge->forAll(e1,e2 |
el <>e2
implies e1.startPoint <> e2.startpoint

a linearShape is any shopem and el.endPoint <> e2.endpoint)}

that can be constructed of line B h edge LineS

segments (in contrast with | LinearShape 1 {ordered] 1% ineSegment

shapes that contain curves). " startPoint: Point
endPoint: Point

| | | length : int
Path | Line | | Polygon | {startPoint <> endPoint}
length()| {edge->size()=1} {edge->first().startPoint =
{length = edge->last().endPoint}

edge.length->sum()}
RegularPolygon

{edge->forAll(e1,e2 |
el.length = e2.length)}

Figure 5.24 Constraints and notes on polygons and points

constraint is shown in curly brackets (also called ‘braces’). A constraint
expresses a logical statement that should evaluate to true. UML allows
constraints to be written in any language supported by a given tool; however,
the recommended language is Object Constraint Language (OCL). We will
discuss OCL in more detail next.

5.7 The basics of Object Constraint Language (OCL)

OCL is a formal language designed to enhance the modeling capabilities of
UML. It was originally designed exclusively to specify constraints in UML
models; the latest version, however, can also be used to specify such things as
navigation paths that allow you to formulate queries for information in UML
models.

We will focus here on its original use for modeling constraints, and will give
examples you can emulate in order to write the most common kinds of
constraints. Although we will only discuss its use in class diagrams, OCL can
also be used in other types of UML diagram where constraint specification is
required. If you wish to learn more, you can consult a more advanced book, or
else the OCL specification itself, available from the Object Management Group.

OCL is a specification language, not a full programming language. The OCL
statements we will look at simply specify logical facts (constraints) about the
system that must remain true. OCL statements need not themselves be compiled
and executed; however, designers must ensure that the code they write always
respects the constraints imposed by each OCL statement. Automatic code
generators must also ensure that code adheres to what the OCL statements say.
A constraint cannot have any side effects; it can only compute a Boolean result
and cannot modify any data.

OCL statements in class diagrams can specify what the values of attributes
and associations must be. They can also state the preconditions and post-
conditions of operations, although we will not discuss that usage here.

194

Chapter 5
Modeling with classes

Formal methods, first order logic,Z and OCL

A formal method is an approach to software engineering in which everything is specified in logic,and
mathematical techniques are used to verify the logic. Also, where possible, the logic is automatically
processed to demonstrate that important properties of the software, such as safety requirements,
are true. The type of logic normally used is called first order logic, although extensions to this exist.
Concepts from set theory are also employed.

There is an ‘opinion war’ going on between those who feel formal methods rarely pay off
in practice, and those who feel that judicious or even extensive use of formal methods (using
a good notation) should be promoted since it will result in much better software.

Historically, logic has been written using a notation called predicate calculus. Z, pronounced
‘zed’, is a syntax for logic and set theory designed at Oxford University for software
specification. For many years it is been one of the most popular notations for formal methods
since it incorporates important abstractions missing from predicate calculus.

However, ordinary practitioners often find Z intimidating, partly because it uses a wide
variety of special characters. OCL was developed by IBM as a logic notation that incorporates
powerful abstractions while at the same time reading more like the programming languages
that software engineers are used to. OCL is part of the UML set of standards managed by the
OMG, and is in fact used to specify much of UML itself. Almost everything written in Z can
be translated very directly into OCL; we therefore predict that in the long run OCL will
become the dominant notation for formal methods.

The simplest OCL statements can be built out of the following elements:

References to role names, association names, attributes and the results of
operations

The logical values true and false
Logical operators such as and, oz, =, >, < or <> (not equal)
String values such as: 'a string'

Integers and real numbers (the latter having a decimal point)

Arithmetic operations *, /, +, -
For example, the following constraint is found in Figure 5.24:
B (startPoint <> endPoint} constrains the two ends of a LineSegment to be different.

You can also navigate from class to class using a dot to separate components. For
example, in LinearShape, to refer to the length of the edges you can refer to
edge.length.

When you refer to the ‘many’ end of an association, the result is a collection
of objects. You can refer to special OCL properties of a collection itself using the
-> operator, as in:

M {edge->size() = 1} constrains the number of edges in a line always to equal one.

Section 5.7
The basics of Object Constraint Language (OCL) | 19 5

B (length = edge.length->sum()} constrains the length of a Path to be equal to the
sum of all the separate values of edge.length.

A collection is most often a mathematical set; however, if the special
constraint {ordered} is present on the association, then the collection is a
sequence. In that case you can refer to special properties such as the first and
last elements, as in:

B {edge->first().startPoint = edge->last().endPoint} which constrains a Polygon
to be a closed loop.

You can make logical statements about all the values in a collection using the
forall operator. The following expression also uses the implies operator, which
works as an if-then statement.

M {edge->forAll(el,e2 | el <> e2
implies el.startPoint <> e2.startpoint
and el.endPoint <> e2.endpoint)}

The above statement can be interpreted in English as follows. Take all possible
pairs of edges, el and e2. (All possible pairs can result in two identical edges,
since either member of a pair can be any element in the set.) If the members of
a pair of edges are different, then they must have a different start point and a
different end-point.

OCL expressions do not have to be written directly on a diagram. In order to
avoid clutter, you can write them separately and specify a context for each
expression, as indicated in the following:

context LineSegment inv:
startPoint <> endPoint

In this expression, inv means that the statement is an invariant (always true) of
the class LineSegment.

Exercises

E95 Write, in English, as many constraints as you can think of about shapes, that
have not been expressed in Figure 5.24. Take at least three of these and write
them in OCL.

E96 Write constraints using OCL that express the following constraints:

(a) In Figure 5.12(a), a subcategory must be different from its super-category.

(b) In Figure 5.8, none of the mutually exclusive courses can also be successors
or prerequisites.

(c) In Figure 5.8, a successor cannot also be a prerequisite.

196|

Chapter 5

Modeling with classes

Aspects of UML class diagrams we have not covered

We have covered the most important elements of UML class diagrams — enough for you to create

most models. There are, however, many details we have not covered. To learn about these, you

should consult a book that describes UML in more depth, or the UML 2.0 specification from the

OMBG. The following are some of the features of class diagrams you may want to learn about first

because you may see them in models you need to understand:

B Qualifiers. These are attributes that are shown in a special box at the far end of an association.
The value of the attribute is a unique identifier, controlled by the class to which it is attached.

M A notation (a dashed box overlapping the top-left of a class) to represent templates such as those
found in C++ or now Java |.5. These are also known as parameterized classes or generic classes.

I Showing dependencies among classes using a dashed line. Dependencies can include one class
calling the methods in another; or being a friend of another (allowing access to its private

methods).

M The UML metamodel:a class diagram that describes the elements of UML itself.

I Ternary or N-ary associations. These are associations involving more than two classes. It is
always possible to convert these into a series of binary associations. We therefore do not
recommend using them.

58 A class diagram for genealogy

In this section we will present a modeling problem that has some interesting
issues to consider. Imagine you are developing a genealogy system, in which you
have to model various human relationships, particularly those between parents
and children in a genealogical tree.

The first observation to make is that Child and Parent should not be two
distinct classes, since one person can both be the parent of someone and the
child of someone else. It must be the case, then, that child and parent are roles in
an association between instances of a class called Person.

Starting with this observation, we can draw the somewhat naive initial class
diagram shown in Figure 5.25(a). The fact that the parents of a child must be of
opposite sex is specified here using an OCL constraint. The constraint says that
for all pairs of Person objects playing the parent role, the sex of one must not
equal the sex of the other.

Figure 5.25(a), however, does not allow the system to keep track of marriages,
which are important to genealogists. The two parents of a person are not
necessarily married, and married people may have no children. Therefore
Figure 5.25(b) adds an extra association showing the marriage relation
explicitly. This association contains two constraints that specify the sex attribute
possessed by the husband and wife.

However, there are still some severe problems with Figure 5.25(b), which are
tixed in Figure 5.25(c):

A person may have multiple marriages, and also children with several different
partners over the course of his or her life. This problem is solved by making the

Figure 5.25

Section 5.8 | 197

A class diagram for genealogy

Person Person
name name
sex sex
placeOfBirth placeOfBirth
dateOfBirth dateOfBirth
placeOfDeath placeOfDeath
dateOfDeath {husband.sex | dateOfDeath
placeOfMarriage = nmale placeOfMarriage
dateOfMarriage [<hild husband| dgteOfMarriage ~ |child
dateOfDivorce * 0-1 dateOfDivorce |*

parent | 2 0..1|wife parent 2

> wife.sex >
{pa]re<n>t f<2)rA||(p1,p2 | {= ioonale) {pu]re<n>t F<2)rA||(p],p2 |
implies p1.sex <> p2.sex|} implies p1.sex <> p2.sex|}
(a) (b)
Person Person
name name
sex placeOfBirth
placeOfBirth dateOfBirth _
dateOfBirth placeOfDeath | <hild
placeOfDeath [child dateOfDeath | *
dateOfDeath |*
ther>forAll(p1,p2 | P02
partner>forAll(p1,p2 |
implies p1.sex <> p2.sex]} * | Woman | | Man
Union femalePartner [0..1 0..1 | malePartner
placeOfMarriage [%! -
dateOfMarriage ™" * *
dateOfDivorce Union
0.1
placeOfMarriage [parents
dateOfMarriage
dateOfDivorce
(c) (d)

Alternatives for a genealogical class diagram - the first two are unacceptable since
they have major problems

husband-wife association into an association class. We call it Union, and create a
new role of Person called partner, since there may be no formal marriage.
Marriage could in fact be a subclass of Union. The attributes placeOfMarriage,
dateOfMarriage and dateOfDivorce are now put into the Union class; previously
they would have been duplicated in both instances of Person.

In Figure 5.25(b), a person was required to have exactly two parents. In
Figure 5.25(c), the parents role of the child—parent association is made optional
since there may be no record of a person’s parents; this is often the case when
researching historical genealogical information. In addition, the partner role
allows for only zero or one partner to be known, although information such as
the date of marriage might be.

Note that Figure 5.25(c) has an interesting configuration: there are two separate
associations, with quite different meanings, between Person and Union.

198

Chapter 5

Modeling with classes

Exercises

E97

E98

E99

EI00

EI0I

Figure 5.25(d) is similar to Figure 5.25(c), except that two subclasses of
Person have been added. This allows for the removal of a constraint, but is
otherwise of minimal benefit. The sex attribute of person is now removed. A
polymorphic operation would now have to be provided that has different
methods in Woman and Man. These methods might both return constant values,
either "female" or "male".

Using Figure 5.25(d), describe how the following operations of class Person
would be performed. You do not need to write code; simply describe how the
available information would be used to compute the result.

(a) getSiblings

(b) getHalfSiblings
(c) getStepSiblings
(d) isMarried

(e) getNumberOfMarriages

Write OCL constraints expressing the following facts about Figure 5.25(d):
(a) You cannot die before you are born.

(b) The date of a marriage always precedes the date of that marriage’s divorce.

Give the advantages and disadvantages of Figure 5.25(d), as opposed to
Figure 5.25(c).

A possible variation of Figure 5.25(c) would be to create a class Marriage that is a
subclass of Union.

(a) Describe the two classes Union and Marriage in terms of their associations
and attributes.

(b) What would be the advantages and disadvantages of this change, as
opposed to Figure 5.25(c)?

Extend the genealogical example to handle the following situations:
(a) Adoption and adopting parents.

(b) Same-sex unions (but still ensuring that the biological parents of a child
must be of opposite sex).

Section 5.9 | 199

The process of developing class diagrams

5.9 The process of developing class diagrams

So far in this chapter we have discussed the syntax of class diagrams, and have
raised some issues about what constitutes a good or bad model. You may,
however, be left wondering: where do I start, and what steps should I take to
ensure I build an effective model? This section provides some guidance on this
issue.

Class diagrams versus entity-relationship diagrams

Database designers have for many years used a notation called Entity Relationship Diagrams (ERDs).
This notation has much in common with UMLs class diagrams; in fact, the developers of OMT, a
predecessor to UML, took many ideas from ERDs. In ERDs, the ‘entities’ are similar to classes and
the ‘relationships’ are similar to associations. Relationships are shown using a large diamond symbol,
which is one of the features that makes them substantially more bulky than class diagrams. Also,
standard ERDs do not show operations. Traditional ERDs did not show inheritance either, but
Extended ERDs (EERD:s) do.

ERDs are still widely used in the database community, although many database designers
prefer now to use UML class diagrams. Those who prefer to continue using ERDs do so
because the database community has developed many ERD tools and considerable expertise
at using both the notation and the tools.

Models of the domain, versus models of the system
You can create class diagrams or other UML models at different stages in the
software engineering process and with different purposes and levels of detail.
Three types of model are listed in Table 5.1.

First, you can create informal class diagrams while performing domain
analysis — these constitute part of what we call an exploratory domain model.
Such diagrams represent what you have learned about the various entities and
relationships in the domain; they help in understanding that domain. They are
not, however, intended to model the software you will develop. They normally
have some classes, associations and attributes that are outside the scope of the
system. Also, in an exploratory domain model, you would not normally be
concerned with operations and polymorphism, nor with many of the modeling
principles we have discussed so far, such as avoiding multiple inheritance.

During requirements analysis or the early stages of design you will need to
develop a model that also contains domain classes, associations and attributes.
But this time, the model represents data that will actually be manipulated and
stored by the system. We call this the system domain model; most of the class
diagrams discussed so far in this chapter can be considered to be of this type.
When we say ‘domain model’ we are referring by default to the system domain
model, not the exploratory one. The classes in this model become real software
modules and the instances of most of these classes normally end up being stored

200 | Chapter 5

Modeling with classes

Table 5.1 Class diagrams developed at different phases of the software engineering
process
Contains elements
that do not
Contains elements represent things in

that represent Models only things the domain, but are
things in the that will actually needed to build a
Type of model domain be implemented ~ complete system

Exploratory domain model: Yes No No
developed in domain analysis to

learn about the domain

System domain model: models Yes Yes No
those aspects of the domain

represented by the system

System model: includes classes Yes Yes Yes
used to build the user interface

and system architecture

persistently in some kind of database. Instances are typically loaded from and
saved in the database as the program runs.

The system domain model, however, omits many classes that are needed to
build a complete system; in fact it can contain less than half the classes of the
system. The complete system model includes the system domain model, but also
adds classes representing the following:

B User interface classes such as windows, menus, commands and forms.

M Classes representing aspects of the system’s architecture such as clients, servers,
files and databases.

M Utility classes that make parts of the system more reusable, easier to maintain
or easier to connect to other systems.

Instances of the user interface and architectural classes are normally created
when a program is started, and then discarded when a program terminates.
Most of these classes tend to be directly reused from class libraries, or else
represent subclasses of library classes.

Generally, the system domain class diagram should be developed in such a
way that it can be used independently of a particular set of user interface classes
or architectural classes. This point is illustrated by Figure 5.26, which is a
package diagram - a type of diagram we will discuss in Chapter 9. The domain
model classes are in one package, but this package can be used in conjunction
with different UI packages or architectural frameworks.

Figure 5.26

Section 5.9 | 201

The process of developing class diagrams

— —
zzz p—
Domain model Domain model
— —
— —
" Prog
Winl
Client of Win 1]
fat-client é] Stand-alone *
system Graphical model program forms-based Ul

Two different systems which use the same domain model

A suggested sequence of activities

You would be modeling in a disorganized way if you simply wrote down
whatever occurred to you, and then filled in gaps until you were finished. If you
do this you will find yourself going backwards and forwards adding different
things to your model, never quite sure how close you are to being finished. You
will tend to work slowly and leave out important details.

You could, on the other hand, take a rigid approach in which you would start
by determining a complete list of classes, then determine all the associations,
then fill in all the attributes, etc. However, it is very hard to complete one step
before moving on to the next. Almost all experienced modelers find that
working on one aspect of a model gives them ideas about all the other aspects.
Therefore, if you follow a rigid approach, you will also tend to leave out
important details.

Following an intermediate approach, which is neither disorganized nor overly
rigid, seems to be best. You do need to have a starting point, and that starting
point should be identifying an initial set of classes. However, you will certainly
add and delete from this set as work progresses. We will discuss creating the
initial set of classes shortly.

You also need to have in mind a general path to follow after identifying the
initial classes. However, it is also important to feel free to come back to earlier
steps when you realize you forgot something, and to jump ahead to record your
inspirations when you have them.

We therefore suggest that you work in the following sequence, unless seized
by inspiration to work in a different sequence:

Identify a first set of candidate classes.

Starting with the most important classes, add any associations and attributes
that clearly will be needed.

Work out the clearest generalizations.

List the main responsibilities of each class. These are simple statements of
functions to be performed by each class; we will discuss them below.

202

Chapter 5
Modeling with classes

B Based on responsibilities, decide on specific operations that are needed.

M Iterate over the entire process, examining the model to see if you need to add
or delete classes, associations, attributes, generalizations, responsibilities or
operations. In particular, you will want to ensure that all associations, attributes
and operations are needed to fulfill some responsibility, and that there is
sufficient information to fulfill every responsibility. You will also want to see if
you can apply any of the design patterns discussed in the next chapter. In
addition, you will want to identify any suitable interfaces.

B Repeat the previous step as needed until the model is satisfactory.

We will explain the steps of the above sequence, with examples, in the coming
subsections.

Should you decide upon attributes or responsibilities first?
There are several points of view about the sequence in which you should decide upon the elements
of a class diagram.

Some people prefer to decide upon responsibilities before attributes. The holders of this
point of view believe that attributes represent the private state of objects, which should be
hidden inside each class, and that responsibilities are more abstract. In this approach,
determining responsibilities first will help you determine the attributes later on.

A different point of view is that when you are deciding upon attributes, you are really
deciding upon abstract responsibilities for holding information, which are among the most
important responsibilities.

Whichever viewpoint you hold, the process of revisiting the analysis steps performed
earlier means that either approach will work.

People who promote both of the above points of view agree on one thing: you should not
decide on instance variables (concrete implementations of attributes) until the final stages of
modeling, because these really do represent the private state of objects.

|dentifying classes

There are two ways to identify classes:

B When developing a domain model, you tend to discover classes. They may be
found in source material such as requirements descriptions, interview notes, or
the results of brainstorming sessions.

B When you work on the user interface or the system architecture, you tend to
invent classes that are needed to solve a particular design problem. You may
also sometimes invent classes when creating a domain model; for example, you
might invent a generalization whose superclass has a name not normally used
in the domain. To illustrate this, in Figure 5.24 the class LinearShape was
invented to represent all those shapes (Polygons, Lines and Paths) that are

Section 5.9 | 203

The process of developing class diagrams

composed of line segments — even though people normally do not use the term
‘linear shape’ when they talk.

Reuse should always be a concern when identifying classes. If you are building
your system using a framework, then your model will contain many classes from
that framework. If you are building your system as an extension to an existing
system, then you will incorporate many of the classes from the original system.
You may also be able to look at similar systems to obtain useful insights about
the current application.

A simple technique for discovering the initial set of domain classes for a
system is to look at source material such as a description of requirements. From
this, you extract the nouns and noun phrases. A noun phrase is simply a string
of nouns, or a noun modified by one or more adjectives. Once you have picked
potential nouns or noun phrases, you can choose class names by following the
principles described in Section 2.2 (on page 31).

From the initial set of class names you should make sure there are no nouns
or noun phrases that:

Are redundant (i.e. two names for the same class).
Clearly represent instances (although their class may have to be included).

Are vague or highly general terms, which do not convey specific information
about the proposed software. For example, ‘the organizations purpose, ‘the
users goal, ‘the information this application will represent.

Correspond to classes that are not needed for this application or this type of
model. For example, in a domain model, you would eliminate classes that
represent commands or menus in the user interface. As a rule of thumb, a class
is only needed in a domain model if you have to store or manipulate instances
of it in order to implement a requirement.

A common difficulty is deciding whether to keep classes in a domain model
that represent types of users or other actors. You would only keep such classes if
storing and manipulating this information is actually part of the domain. In a
security or instant messaging system, for example, it would probably be part of
the domain; whereas in a drawing program it would not. But what about a
system for managing corporate accounts? The corporate accounting database
would not itself store information about the various users of such a system who
might, for example, be managers, administrative assistants, accountants and
purchasers. However, some part of the system will clearly need to store
information about them in order to permit security checks. The answer here is
that there should probably be two separate subsystems, each with its own
domain model: one for the accounting records and one for access permission.

You might choose to be fairly liberal in the process of building the initial list
of classes, keeping most classes that seem to be possible candidates. You could
on the other hand be stricter, only keeping a class if you are definite it will be

204| Chapter 5

Modeling with classes

Example 5.2

Exercise

EI02

needed. We suggest the liberal approach since it allows you to be more
spontaneous. You can easily eliminate classes later.

Using the description of the Airline system from Appendix C, list the nouns and
noun phrases that might end up being classes in a system domain model. For
those nouns that should not become classes, explain why not.

Nouns that are put on an initial list of classes include: Flight, Passenger, Employee.
Other nouns or noun phrases that we choose not to include in the initial list
of classes:

J ‘Ootumlia Airlines, Java Valley, ‘Ootumlia’ These are instances.

J ‘Reservation system. This is not a class because it is part of the system, not
the domain information represented by the system.

J ‘Sightseeing Flight. Rejected in favor of Flight, since the latter is more
general and therefore makes the system more flexible.

J ‘Seat. Appears to be an attribute of Flight.

J ‘Crew. This word implies the entire crew, when we really want to store
information about individual members of that crew. We could have created
a class CrewMember, but Employee seemed more flexible — allowing us to use the
class in future for people who are not actually crew members.

J ‘Schedule’ This is a word that describes a complex bundle of information
that would be better represented by classes such as Flight, and the attributes
and associations of those classes.

J “Future’ This is a noun, but it is not part of the system to be developed.

J ‘Frequent Flier Plan’ This is not part of the current scope.

This exercise is based on the short program descriptions, as found in
Appendix C. Determine the nouns and noun phrases that might, in the end,
become classes. While making your list, choose good names for each of the
potential classes.

(a) Bank account management system.
(b) Election management system.

(c) Geographical information system.
(d) Investments system.

(e) Manufacturing plant controller.

Section 5.9 | 205

The process of developing class diagrams

(f) The woodworking design system.

|dentifying associations and attributes
Once you feel you have a good initial list of classes, it is time to turn your
attention to identifying associations and attributes.

The best way to do this is to start with the class or classes that you think are
most central and important to the system. For each of these, decide on the clear
and obvious data it must contain and its relationships to other classes. Then
work outwards towards the classes that are less important.

As you add an association or attribute, make sure it is relevant to the
application - that it will be needed to implement some requirement. For
example, you might be tempted to add many different attributes to a class
Person: name, height, weight, dateOfBirth, educationlLevel etc. But do you really
need all this information in your application? If there is no requirement to
manipulate certain information, then representing that information in your
model adds unnecessary complexity.

As you are adding attributes and associations, follow the principles of good
modeling discussed in the earlier sections of this chapter. For example, analyze
each association to make sure its multiplicity is correct.

Tips about identifying and specifying valid associations
To find out whether an association should exist, ask yourself if one class
possesses, controls, is connected to, is related to, is a part of, has as parts, is a
member of, or has as members some other class in your model. You will often
find statements of these types by scanning the document from which you
extracted the original list of classes.

As you add each association, remember to specify the multiplicity at both
ends and label it clearly.

An association is only legitimate if its links will survive beyond the execution
of any particular operation. Associations in domain models will normally be
stored in a database. So, if you do not think that the information captured by an
association will need to be stored, then perhaps the association should be
eliminated.

A common mistake is to represent actions as if they were associations. For
example, imagine you had classes LibraryPatron and CollectionItem (where a
CollectionItem might be a book, video recording, etc.) You might initially think
that borrow and return should be associations between these two classes. On the
surface this seems reasonable since you might want to keep a record of each of
these actions. However, the correct way to model this information is to use a
separate class Loan, as shown in Figure 5.27.

Tips about identifying and specifying valid attributes
Attributes can be identified by looking at the description of the system and
searching for information that must be maintained about instances of each class.

206|

Chapter 5

Modeling with classes

Figure 5.27

LibraryPatron
¥ ¥ Loan * U LibraryPatron

borrow return

borrowedDate

* * dueDate o [Collectiont
Collectionltem returnedDate ollectionltem

Bad, due to the use of associations Better. The borrow operation creates a
that are actions Loan, and the return operation sets the
returnedDate attribute

Avoiding using associations to represent actions

Several of the nouns you may have originally identified, but rejected as classes,
may now become attributes.

Remember that an attribute should generally be a simple variable - typically
an integer or string. It can also be a one-to-one composition as shown in
Figure 5.20.

An attribute should not normally represent a variable number of things (i.e.
it should not have a plural name). For example, as shown in Figure 5.28,
addresses is not a good name for an attribute of Person, even though there might
be a home address, work address and shipping address. It is also not good to
have many duplicate attributes as shown in the middle diagram. In situations
like this it is best to create an association to a separate Address class as shown
on the right.

Person
name
street] Person Address
municipality 1 1 *
Person provOrSfcte] name addresses ;:r:r:::ipol“y

name counhl'y] d provOrState

addresses postalCodel country
street2 postalcode
municipality2 type
provOrState2
country?2
postalCode?2

Bad, due to Bad, due to too many Good solution. The type indicates whether it
a plural attribute attributes, and the is a home address, business address etc.

Figure 5.28

inability to add more
addresses

Alternatives for handling multiple addresses

An attribute should not have an implicit internal structure. For example, if
in your application you will need to obtain the first name of a person, then you
should not use a single attribute to represent the name. If you did this, then
the application would have to parse the attribute to extract the first name,

Example 5.3

Figure 5.29

Section 5.9 | 207

The process of developing class diagrams

which is error-prone. Instead you should have separate firstName and lastName
attributes.

In general, if a subset of a class’s attributes forms a coherent reusable group
(such as an address), then you should consider creating a distinct class
containing these attributes. This will make your system simpler, more flexible
and easier to use.

Continuing from Example 5.2, add an initial set of associations and attributes to
the classes you identified. Add and delete classes as necessary.

A central class at which to start identifying associations and attributes is Flight.
The problem description informs us that there is a schedule of numbered flights;
from this we can infer that a flight has a date, a time and a flightNumber. However,
we notice that every day the flights that leave at the same time have the same
flight number. Therefore it makes sense to split Flight into two classes we will
call RegularFlight (containing the time and flight number for flights that
regularly depart at the same time of day) and SpecificFlight (that departs on a
particular day, and on which passengers are booked). The association between
these classes is one-to-many. We do not need to name the association explicitly
since the default ‘has’ appears adequate. (This approach does not allow us to deal
well with charter flights, but we leave that as an exercise.)

We now move on to understand how passengers are booked. There is clearly
a many-to-many relationship between Passenger and SpecificFlight but, as
discussed earlier in Section 5.3, we need to add a Booking association class; this
will contain the seatNumber.

Each Passenger has a name, but we will also assign him or her a number in case
names are identical, and to allow for the anticipated frequent-flier plan.

The phrase ‘who supervises whom’' implies that Employee needs a reflexive
association with a supervisor role. The phrase ‘what everyone does’ implies an
attribute jobFunction.

The class diagram so far is shown in Figure 5.29.

Passenger Employee RegularFlight
name name * time
number employeeNumber E flightNumber
] jobFunction supervisor
*
% % %
Booking % 1l SpecificFlight
seatNumber date

First attempt at a class diagram for the airline system

208| Chapter 5

Modeling with classes

Exercise

EI03 For the system(s) you worked on in the last exercise, identify an initial list of

attributes and associations. Add or delete classes as necessary. Draw a
preliminary class diagram.

|dentifying generalizations and interfaces

Figure 5.30

There are two ways to identify generalizations: bottom-up and top-down. The
bottom-up approach groups together similar classes, creating a new superclass,
whereas the top-down approach divides up a complex class, creating new
subclasses.

To use the bottom-up approach, you look for classes that have features in
common. In general, if you find two or more classes that have similar attributes,
associations or operations then you should consider creating a common
superclass.

For example, for any system in which there are different types of person, you
will probably find that they all have attributes to store the name, telephone
number and address. These attributes should therefore be placed in the
common superclass.

Sometimes the common features do not have the same name. The left part of
Figure 5.30 shows a case where there are two types of customers: instances of
Company and instances of Person. Despite the fact that the attributes and
associations have different names, we can still see that they are really the same,
hence we should create a common superclass LegalEntity, as shown in the right
part of Figure 5.30. This will possess renamed attributes and a single association.

Person LegalEntity

name
phone

customer

sk

name
phoneNumber

3k [customer
%

Company

*
compunyNGme corporateCustomer

telephone) Person Company
L]
Creating a generalization of two classes which have similar features, but the names

of the features are different. The left diagram is the original version; the right
diagram is the improved version

Instead of creating a superclass, it might be better (or necessary) in some cases
to create one or more interfaces. This would be typical if you will sometimes
need to declare a variable that can contain instances of several classes, yet:

Section 5.9 | 209

The process of developing class diagrams

B The classes are very dissimilar except for having a few operations in common,
or

B One or more of the classes already have their own superclasses, or

B You want to limit the operations that can be performed on the variable to just
those available in an interface.

For example, in the SimpleChat system there is a class called ClientConsole. If we
wanted to add another type of user interface, such as ClientGUI, then we might
be tempted to create a common superclass called ClientUI. However, this would
prevent us from giving ClientGUI some other superclass — in fact we will want to
make ClientGUI a subclass of Frame.

Example 5.4 Continuing from Example 5.3, add any obvious generalizations, making
whatever other changes become necessary.

Classes Passenger and Employee clearly share common information. However
simply making a superclass called Person does not suffice since it is possible for
a person to be both an employee and a passenger — an instance can only be of
one class. Therefore we introduce a class called PersonRole and an association
that allows each Person to have up to two roles. The result is shown in

Figure 5.31.
Person
PersonRole |2-2
name
% idNumber
I I % RegularFlight
PassengerRole EmployeeRole
: ' ZI time
1 jobFunction supenvisor | flightNumber
% 1
Booking |* ! SpecificFlight
seatNumber date

Figure 5.31 Airline system class diagram after adding a generalization

Exercises

E104 For the system(s) you worked on in the previous two exercises, identify any
generalizations or interfaces. This may lead you to add or delete classes,
associations and attributes. Modify your class diagram(s) accordingly.

EI105 For the sets of potential classes listed in Exercise E12, build a complete class
diagram with associations and attributes as well as generalizations.

210

Chapter 5

Modeling with classes

Allocating responsibilities to classes

A responsibility is something that the system is required to do. The prime
responsibility of performing each functional requirement must be attributed to
one of the classes, although other classes will likely collaborate with it to help
perform the task.

In general, it is important to distribute the responsibilities among the classes
so that no one class has an unfair share, and hence becomes unduly complex. If
a class has too many responsibilities then you should examine it to see whether
it can be split into several distinct classes. Also, all the responsibilities of a given
class should be clearly related to each other and to the attributes and
associations of the class.

If a class has no responsibilities attached to it, then it is probably useless. On
the other hand, when a responsibility cannot be attributed to any of the existing
classes, then a new class should be created.

A good way to determine responsibilities is to perform use case analysis as
discussed in Chapter 4. Another good source of information about
responsibilities is to look for verbs and nouns describing actions in the system
description.

There are several categories of responsibilities that can be found in a wide
variety of classes:

Setting and getting the values of attributes. It is good practice to make
attributes themselves private and to create public methods where necessary to
allow access to them. This allows the class to have more control over its
attributes - it can ensure that they are given only valid values. It also allows you
to change the internal design of the class without affecting how users of the
class interact with it. For some classes, all the responsibilities fall into this
category. A Date class, for example, might have no other responsibility than
holding the day, month and year of a date, and allowing access to the values of
these attributes.

Creating and initializing new instances. Often, the primary responsibility for
creating an instance of a class is given to some other class. (That other class has
to call the constructor of the class being instantiated.) Sometimes, however,
responsibility is placed directly in the class whose instance is being created
(implemented as a static operation). There is often a need for several classes to
collaborate in this type of responsibility, as we will discuss in the next section.

Loading to and saving from persistent storage.

Destroying instances. Like the process of creating instances, this also often
requires collaboration with other classes.

Adding and deleting links of associations, such as recording that a particular
professor will teach a certain course. Responsibilities of this kind are similar to
manipulating attributes. However, they are more complex since there is the
need to collaborate with other classes to ensure that the bi-directional nature of

Section 5.9 | 211

The process of developing class diagrams

most associations is maintained properly. We will discuss this in more detail in
the next section.

M Copying, converting, transforming, transmitting or outputting. Many
applications have responsibilities of these types, which require changing the
information to some other form. A common example is the toString method in
Java, which creates a String representation of an object.

B Computing numerical results, such as the fine on an overdue library book.

B Navigating and searching. For example, in Figure 5.30, there might be a need
for capabilities to look up a particular customer by name, or to find all the
customers that match a certain criteria.

B Specialized work needed by the particular application that does not fit in any
of the above categories.

When listing responsibilities, many skilled modelers will omit all but the last
three categories — and it is extremely common to omit the first category. This is
because the presence of such responsibilities can largely be inferred from the
class diagram. However, taking this loose approach leaves uncertainty about
where some responsibilities will be put — the modelers have to mentally decide
where to place omitted responsibilities when identifying operations.

Example 5.5 Create a list of responsibilities for the Airline system discussed in Examples 5.2 to
5.4. Allocate each responsibility to a class and discuss your reasoning for the
allocation. Finally, update the class diagram as necessary.

The following are a few of the responsibilities derived from the system
description, with an indication of in which classes they might be put. It is clear
when creating this list of responsibilities that the airline system description is
rather too brief - forcing us to deduce the presence of unstated requirements.

M Creating a new RegularFlight. This could be a class (static) responsibility of the
RegularFlight class. But we prefer, as much as possible, to give responsibilities to
instances. We will therefore introduce a new class called Airline (shown in
Figure 5.32) that will have this responsibility. There will probably be only one
instance of Airline.

B Searching for a particular RegularFlight. In order to do this, we need a class that
maintains a collection of all the instances of RegularFlight. That class will be
Airline, which will therefore have this responsibility.

B Modifying the attributes of a RegularFlight. Each class should normally modify
its own attributes; this responsibility should therefore go in RegularFlight.

B Creating a SpecificFlight. We choose to put RegularFlight in charge of this,
since the new SpecificFlight will be an occurrence of a particular RegularFlight
that already exists at the time this responsibility is initiated.

212 Chapter 5

Modeling with classes

Person Airline

PersonRole

name 1

idNumber
%

[|
PassengerRole EmployeeRole *:I
1

RegularFlight

time

1 jobFunction supervisor | flightNumber

3 1

& & %k

Booking ! SpecificFlight

seatNumber date

Figure 5.32 Airline system after adding the Airline class

B Canceling a SpecificFlight. This can be put in SpecificFlight.

B Booking a PassengerRole on a SpecificFlight. This could go in either
PassengerRole or SpecificFlight. It could also go in Booking, but we prefer not to
put it there since the appropriate Booking is not yet created by the time this
responsibility is initiated. We choose to give this responsibility to PassengerRole,
since in the real world it is the passengers who initiate bookings.

B Canceling a Booking. This should be put in Booking.
Exercises

E106 For the system(s) you worked on in Exercises E102 to E104, determine the
responsibilities of each class. Update your class diagrams as necessary.

EI07 Determine the responsibilities for each of the classes in the genealogical
example, Figure 5.25(c).

A paper-and-pencil technique to rapidly develop a class diagram

A useful technique for prototyping class diagrams involves the use of small
cards, or pieces of paper such as sticky notes. As you identify classes, you write
their names on the cards. You can add and delete cards as the technique
progresses. The cards are often called CRC (Class—Responsibility-
Collaboration) cards.

As you identify attributes and responsibilities, you list them on the cards as
well. The fact that each card has limited space encourages you to not make any
of the classes excessively complex. If you cannot fit all the responsibilities on one
card, this suggests you should split the class into two related classes.

Section 5.9 | 213

The process of developing class diagrams

Tagged values You can move the cards around freely on a whiteboard
Figure 5.33 shows the use of a UML to arrange them into a class diagram. Draw lines
feature called tagged values. You can between cards to represent associations and generaliza-
attach information to any UML tions.
element. In this case we have attached The above technique allows you to rapidly rearrange
‘id’ tags to each operation. The ‘id the class diagram, quickly repositioning classes without
indicates the responsibility using a having to redraw them. A good software tool can also be
letter from‘a’ to'‘e’ as its first character. used for this, but low-tech paper-and-pencil techniques
can often be faster than manipulating the software’s user
interface. The paper-and-pencil approach is especially
effective in a brainstorming environment, where several people can be working
together to move around the various classes.

|dentifying operations
Operations are needed to realize the responsibilities of each class — there may be
several operations per responsibility, but one will be in charge.

The operation that is in charge of fulfilling the responsibility will normally be
declared public. It becomes part of the interface of the entire subsystem. Other
methods that collaborate to perform the responsibility will be as private as
possible.

The following are situations in which several classes must collaborate to
implement some typical responsibilities of a given class. We will look at the
operations required to implement these responsibilities, and will use the class
diagram shown in Figure 5.33 as an illustration.

EmployeeRole Airplane
+ getName() {id="e2"} addLinkToSpecificFlight() {id="a2, d3"}
crewMember |3 deletelinkToSpecificFlight() {id="d2"}
« 0.1
Booking o SpecificFlight o
Booking() {id="c2"} + specifyAirplane() {id="a1"}
+ createflightlog() {id="b1"}
* + changeAirplane() {id="d1"}
+ findCrewMember() {id="e1"} .
addLlinkToBooking() {id="c3"}
1 0.1

PassengerRole FlightLog

+ makeBooking() {id="c1"}
addLlinkToBooking() {id= “c4"}

FlightLog() {id="b2"}

Figure 5.33 Classes and operations that collaborate to perform responsibilities of class
SpecificFlight. The public operations are shown with a + symbol

(a) Making a bi-directional link between two existing objects; e.g. adding a
link between an instance of SpecificFlight and an instance of Airplane.

214| Chapter 5

Modeling with classes

al. (public) The instance of SpecificFlight makes a unidirectional link to
the instance of Airplane, and then calls operation a2.

a2. (non-public) The instance of Airplane makes a unidirectional link back
to the instance of SpecificFlight.

(b) Creating an object and linking it to an existing object; e.g. creating a
FlightLog, and linking it to a SpecificFlight.

b1. (public) The instance of SpecificFlight calls the constructor of FlightLog
(operation b2); then, when it is complete, makes a unidirectional link to
the new instance of FlightLog.

b2. (non-public) Class FlightLog’s constructor, among its other actions,
makes a unidirectional link back to the instance of SpecificFlight.

(c) Creating an association class, given two existing objects; creating an
instance of Booking, for example, which will link a SpecificFlight to a
PassengerRole.

cl. (public) The instance of PassengerRole calls the constructor of Booking
(operation c2).

c2. (non-public) Class Booking’s constructor, among its other actions, makes
a unidirectional link back to the instance of PassengerRole, makes a
unidirectional link to the instance of SpecificFlight, and calls operations
c3 and c4.

c3. (non-public) The instance of SpecificFlight makes a unidirectional link
to the instance of Booking.

c4. (non-public) The instance of PassengerRole makes a unidirectional link
to the instance of Booking.

(d) Changing the destination of a link; e.g. changing the Airplane linked to a
SpecificFlight, from airplanel: to airplane?:.

d1. (public) The instance of SpecificFlight deletes the link to airplanel:
makes a unidirectional link to airplane?:, calls operation d2, and then
calls operation d3.

d2. (non-public) airplanel: deletes its unidirectional link to the instance of
SpecificFlight.

d3. (non-public) airplane2: makes a unidirectional link to the instance of
SpecificFlight.

(e) Searching for an associated instance; e.g. searching for a crew member
associated with a SpecificFlight that has a certain name.

el. (public) Create an Iterator over all the crewMember links of the
SpecificFlight, and for each of them call operation e2, until it finds a
match.

e2. (may be public) The instance of EmployeeRole returns its name.

These types of collaborations are applicable in many different systems.

Section 5.9 | 215

The process of developing class diagrams

Notice that it would be very harmful for any of the non-public methods to be
called directly - they would end up only performing part of a complete
responsibility, leaving the system in an unstable state.

Exercises

EI08 Add operations to the examples you worked on in Exercises E102 to E104 and
E106.

EI09 Add operations to the genealogical example of Figure 5.25(c), which you also
worked on in Exercise E107.

EI10 Use the techniques described in this section to extend the airline system. Your
extended system should include the requirements listed below. You should
produce a single class diagram showing classes, attributes and generalizations.
Do not show operations yet.

(a) Flights fly from one airport terminal to another, but may also have several
intermediate stops. A passenger can be booked on one or more of the legs
of a flight.

(b) Passengers can query the system to determine at what times flights are
available from their desired origin city to their desired destination city
(they do not care about which terminal or airport is used by the airline).

(c) Flights have scheduled departure and arrival times, but they can be late,
therefore they have actual departure and arrival times as well.

(d) The airline may add charter flights that are not regularly scheduled.

(e) The airline publishes prices that apply between any pair of cities to which it
flies. Business class, regular and seat-sale fares are available.

(f) Passengers buy tickets and are charged the prices in effect when their
tickets were booked. Each ticket involves a complete itinerary, composed of
a sequence of one or more legs. The fare type is not necessarily the same for
each leg of the flight.

(g) Passengers are automatically part of a frequent-flier plan. They accumulate
points based on the distance they flew and their fare type (business class or
not).

Elll (a) Determine the responsibilities needed to implement the requirements
listed in the previous exercise (omitting the responsibilities that merely
involve setting and getting attributes).

(b) Determine all the operations needed to implement the responsibilities -
specifying in which classes they belong.

216|

Chapter 5

Modeling with classes

5.10 Implementing class diagrams in Java

So far in this chapter we have been talking strictly about modeling. We want
now, however, to take a brief foray into the detailed design stage in order to give
you a taste of how to implement your models. We believe that to become a good
modeler, you have to develop an understanding of how your model will be
concretized as a real system.

On the books web site (www.lloseng.com) you can find a complete
implementation of the Airline system discussed in the last section. Below, we
will briefly discuss some aspects of its Java implementation, leaving you to study
the code in order to understand other details.

The implementation of some aspects of class diagrams is rather
straightforward:

Attributes are generally implemented as instance variables. You have to choose
an appropriate class, but normally it will be a class from the standard Java
library such as String.

Generalizations are implemented using the extends keyword, and interfaces are
implemented using the implements keyword.

Implementing associations, however, takes a bit more thought because there are
several ways to do it. However, once you learn to implement a few associations
you will find yourself using the same general structure of the code over and over
again. In what follows, we will suggest typical ways to implement associations as
objects in a running Java program. More sophisticated techniques are needed
when objects have to be loaded from a database.

Associations are normally implemented using instance variables. You divide
each two-way association into two one-way associations so that each associated
class has an instance variable representing the other end of the association.

To implement a one-way association where the multiplicity at the other end is
‘one’ or ‘optional, you declare a variable whose type is that class. Therefore
SpecificFlight from Figure 5.33 would have declarations of the following
instance variables:

private TerminalOfAirport destination;
private Airplane airplane;
private FlightLog flightLog;

Some of the declarations in other classes would include:
in Booking: SpecificFlight specificFlight ;
in FlightLog: SpecificFlight specificFlight ;

To implement a one-way association where the multiplicity at the other end is
‘many, you use a collection class such as ArrayList. Therefore, SpecificFlight
would have declarations:

Section 5.10 | 217

Implementing class diagrams in Java

private List crewMembers; // of EmployeeRole
private List bookings;

The following shows the code needed to implement a responsibility in
RegularFlight to create a new SpecificFlight. This follows the pattern of
responsibility (b) from the last section.

class RegularFlight
{

private List specificFlights;

// Method that has primary responsibility

public void addSpecificFlight(Calendar aDate)

{
SpecificFlight newSpecificFlight;
newSpecificFlight = new SpecificFlight (aDate, this);
specificFlights.add (newSpecificFlight);

}

class SpecificFlight
{
private Calendar date;
private RegularFlight regularFlight;

// Constructor that should only be called from
// addSpecificFlight
SpecificFlight (
Calendar aDate,
RegularFlight aRegularFlight)
{
date = aDate;
regularFlight = aRegularFlight;
}
}

To implement an association where the multiplicity at the other end has a small,
fixed upper bound, you can use a regular array. An example is the 0..2
multiplicity in the association between PersonRole and Person in Figure 5.31.
Remember that if you do this you should make sure you are not limiting the
flexibility of the system.

Person would declare the following instance variable:

private PersonRole[] roles = new PersonRole[2];

218|

Chapter 5

Modeling with classes

5.11 Difficulties and risks when creating class diagrams

512 Summary

The following is the key difficulty to anticipate when creating class diagrams in
an industrial context:

Modeling is a particularly difficult skill. Many people who are excellent
programmers nevertheless have considerable difficulty thinking at the level
of abstraction needed to create effective models. Also, since education
programs have not traditionally focused on it, software developers often have
significantly less knowledge about modeling than about design and
programming. Taken together, these mean that software projects are at risk
from models that are incomplete, incorrect or insufficiently flexible.
Resolution. Ensure that members of the team have adequate training in
modeling. Have an experienced modeler as part of every team. Review all
models thoroughly.

In this chapter we introduced UML, the Unified Modeling Language. Then
we showed you how to create class diagrams, one of the most important
types of diagrams in UML. Class diagrams model classes and how they are
related.

Very careful analysis is required to create good class diagrams. A good
starting point is to take a description of the problem, or a statement of
requirements, and look for the nouns in it. Once you have created a basic list
of classes, it is best to start arranging your model starting with the classes
that are the most central or important to the system.

Class modeling can proceed by creating an initial set of associations
among the classes, and adding attributes and generalizations. You then
assign responsibilities to the classes and derive operations from these
responsibilities. This whole process should be performed iteratively.

Any class diagram should be subjected to detailed review. A key thing to
ensure is that all generalizations are valid - that is, they follow the isa rule
and everything in the superclass makes sense in subclasses. Other common
types of error are poor naming of elements of the diagrams and incorrect
multiplicity.

Creating good class diagrams is a central skill in modern software
engineering, but it takes time to become an expert. We suggest practicing
with many examples, and implementing your models. The process of
implementation - actually getting a system to run — will help you heighten
your awareness of potential flaws.

Section 5.13 | 219

For more information

5.13 For more information

The following are some of the many available resources about UML:

UML in general

B Cetus Links on UML: http://www.cetus-links.org/oo_umlhtml is a very
extensive list of resources

B OOTips: http://www.ootips.org, a site that consolidates information about OO
technologies from various sources

B The UML Bibliography: http://www.db.informatik.uni-bremen.de/umlbib

B G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, 1998

B J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998

M 1. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development
Process, Addison-Wesley, 1999

B M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 3rd edition, Addison-Wesley, 2003

B J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edition, Addison-Wesley, 2003

B The Object Management Group: home of the UML Specification: http://
Www.omg.org

Object-oriented development processes

B P. Kruchten, The Rational Unified Process, An Introduction, 2nd edition,
Addison-Wesley, 2000. Discusses the most popular UML-based methodology

M S. Shlaer and S. Mellor, Object-Oriented Systems Analysis: Modeling the World in
Data, Yourdon Press, 1989

B J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice Hall, 1991.
A classic book that presents the OMT notation, a predecessor of UML, along
with a development method that focused on class diagrams

B P. Coad and E. Yourdon, Object Oriented Analysis, Yourdon Press, 1991. This
places the emphasis on entity-relation diagrams

220 Chapter 5

Modeling with classes

B G. Booch, Object-Oriented Analysis and Design With Applications, Addison-
Wesley, 1994. A detailed methodology that was also an important predecessor
of UML

M J. Martin, and J. Odell, Principles of Object Oriented Analysis and Design,
Prentice Hall, 1992

B 1. Jacobson, Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, 1994. Introduces use case analysis; another UML
predecessor

Tools for creating UML models

M IBM Rational Software: http://www.ibm.com/software/rational
B Together by Borland: http://www.borland.com/together/

B Objects By Design maintains a list of UML modeling tools at http:/
www.objectsbydesign.com/tools/umltools_byCompany.html

B ObjectPlant: a good basic shareware tool for the Macintosh. http://
www.arctaedius.com/ObjectPlant/

B Argo UML: an open source shareware project run by Tigris. http://
argouml.tigris.org. Argo UML actively helps you to draw UML diagrams by
suggesting things that you should do; its developers call this ‘cognitive support.
Argo UML is written in Java; you can therefore study and modify its source
code if you wish

Project exercise

Since the SimpleChat system has a very simple class diagram, there are no
exercises for that project in this chapter.

The following problem will allow you to make further progress on the Small
Hotel Reservation System project.

EIl2 Create a class diagram of the ‘Small Hotel Reservation System. Base your

analysis on the requirements you developed in the last chapter. Your diagram
should have any necessary classes, associations, generalizations and attributes.
Write the main use cases of this system and determine the main responsibilities
of each class. We will consider the operations later when we study system
interactions in Chapter 8.

Using design patterns

In the previous chapter, we looked at UML class diagrams. This chapter continues
the study of the static view of software by looking at typical patterns found in class
diagrams. These patterns recur in many designs; by learning and using them you
are reusing the collective experience of many software developers.

In this chapter you will learn about the following
M The structure and format used to describe patterns.

M Patterns used to help ensure separation of concerns in a class diagram:
Abstraction-Occurrence, Observer, and Player-Role.

M A pattern used to create hierarchies of instances: General Hierarchy.

M The Delegation pattern in which a method simply calls another method in
another class, but which can significantly improve the overall design of a
system.

M Patterns in which you use delegation to gain access to facilities in one or
more other classes: Adapter, Facade and Proxy.

M Patterns that help protect other objects from unanticipated access:
Immutable and Read-Only Interface.

B A pattern that enables you to create application-specific objects in a
framework: Factory.

6.1 Introduction to patterns

As you gain experience in object-oriented software development, you will begin
to notice that many parts of your models or designs reappear, with only slight
changes, in many different systems or subsystems. These recurring aspects are
called patterns. Many of them have been systematically documented for all
software developers to use.

222

Chapter 6

Using design patterns

Definition:

a pattern is the outline of a reusable solution to a general problem
encountered in a particular context.

In this chapter we will restrict our attention to patterns used in modeling and
design; but people have also developed patterns for many other human tasks,
such as doing business, diagnosing mechanical problems or taking better
photographs. In Chapter 9, we will look at architectural patterns, which are used
at the very highest level of software design.

A good pattern should be as general as possible, containing a solution that has
been proven to solve the problem effectively in the indicated context. The
pattern must be described in an easy-to-understand form so that people can
determine when and how to use it. Studying patterns is an effective way to learn
from the experience of others.

Each pattern should have a name; it should also have the following
information:

Context: the general situation in which the pattern applies.
Problem: a sentence or two explaining the main difficulty being tackled.

Forces: the issues or concerns that you need to consider when solving the
problem. These include criteria for evaluating a good solution.

Solution: the recommended way to solve the problem in the given context. The
solution is said to ‘balance the forces’; in other words, it has a good
combination of advantages, with few counterbalancing disadvantages.

Antipatterns: (optional) solutions that are inferior or do not work in this
context. The reason for their rejection should be explained. The antipatterns
may be valid solutions in other contexts, or may never be valid. They often are
mistakes made by beginners.

Related patterns: (optional) patterns that are similar to this pattern. They may
represent variations, extensions or special cases.

References: acknowledgements of those who developed or inspired the
pattern.

A pattern should normally be illustrated using a simple diagram and should be
written using a narrative writing style.

In the following sections, we present a sample of the most useful patterns that
you can apply when you perform modeling and design using UML class
diagrams. You will recognize some of them from the discussions in the last
chapter. Here, however, we will describe them in a more formal way. Our list of
patterns is by no means exhaustive — you should see the references at the end of
the chapter to learn about the wide variety of patterns that are available.

The first three of the patterns described below we call modeling patterns, since
they appear in domain models long before any software design occurs. The rest

Section 6.2 | 223

The Abstraction-Occurrence pattern

Patterns and the patterns community

The word ‘pattern’ has a well-understood meaning in ordinary English: it refers to a set of

instructions, or a model or an example from which things are made or matched.

The architect Christopher Alexander developed the notion of patterns for use in
architecture and design. The software engineering community has adopted his meaning of the
term.

Alexander defines patterns as ‘a three-part rule, which expresses a relation between a
certain context, a problem and a solution’.

Patterns are an excellent way to document design understanding, and to pass that
understanding on to others who are learning how to design. By thinking about relevant
patterns as they design, designers can work more rapidly and produce higher-quality work
because they are reusing the experience of others.

The exact format you use to write patterns varies from author to author, but most
authors include the same kind of information that we include. A group of interrelated
patterns form a pattern language.

There is a ‘patterns community’ within software engineering. This is a loose but large
collection of people who believe in the usefulness of patterns, as well as in certain
philosophies regarding their development. Among the important philosophies of the patterns
community are:

B Patterns represent well-known knowledge. In other words, no pattern could ever be patented
because it must be in common use (note the use of a completely unrelated word ‘patent’ that
sounds similar; for more on patents, see the sidebar in the risks section of Chapter |1). People
do not invent patterns — a pattern is a literary work describing common practice.

B Patterns should be in the public domain, where possible; people should be encouraged to
improve the pattern to make it more usable.

B When patterns are written or modified, they should be reviewed in a public setting by a group of
the author’s peers.

I Patterns should be written for the public good. A pattern that describes how to do something
unethical, for example, would not be acceptable to the community.

of the patterns are design patterns since they involve details that would normally
be deferred until the design stage.

6.2 The Abstraction-Occurrence pattern

Context This modeling pattern is most frequently found in class diagrams that form part
of a system domain model.

Often in a domain model you find a set of related objects that we will call
occurrences; the members of such a set share common information but also
differ from each other in important ways.

Examples of sets of occurrences include:

M All the episodes of a television series. They have the same producer and the
same series title, but different story-lines.

224| Chapter 6

Using design patterns

Problem

Forces

Solution

Figure 6.1

Examples

The flights that leave at the same time every day for the same destination. They
have the same flight number, but occur on different dates and carry different
passengers and crew.

All the copies of the same book in a library. They have the same title and
author. However, the copies have different barcode identifiers and are
borrowed by different people at different times.

What is the best way to represent such sets of occurrences in a class diagram?

You want to represent the members of each set of occurrences without
duplicating the common information. Duplication would consume unnecessary
space and would require changing all the occurrences when the common
information changes. Furthermore, you want to avoid the risk of inconsistency
that would result from changing the common information in some objects but
not in others. Finally you want a solution that maximizes the flexibility of the
system.

Create an «Abstraction» class that contains the data that is common to all the
members of a set of occurrences. Then create an «Occurrence» class representing
the occurrences of this abstraction. Connect these classes with a one-to-many
association. This is illustrated in Figure 6.1.

«Abstraction» *1 «Occurrence»
TVSeries Episode
1 %k
seriesName number
producer title
storySynopsis
Title Libraryltem
1 %
name barCodeNumber
author
isbn
publicationDate
libOfCongress

Template and examples of the Abstraction-Occurrence pattern

You might create an «Abstraction» class called TVSeries; an instance of this
might be the children’s series ‘Sesame Street. You would then create an
«Occurrence» class called Episode. Similarly, you might create an «Abstraction»
class called Title which will contain the author and name of a book or similar
publication. The corresponding «Occurrence» class might be called LibraryItem.
These examples are illustrated in Figure 6.1.

Another example of the Abstraction-Occurrence design pattern is the pair
consisting of RegularFlight and SpecificFlight in the airline system, as shown in
Figure 5.29.

Section 6.2 | 225

The Abstraction-Occurrence pattern

Antipatterns These antipatterns are examples of real mistakes made by beginners.
One inappropriate solution, shown in Figure 6.2(a), is to use a single class.
This would not work, because information would have to be duplicated in each
of the multiple copies of a book. For example, the different copies of Moby Dick
can be borrowed by different people; there would, therefore, have to be separate

‘Moby Dick’ instances, listing the same name, author and ISBN.

Libraryltem Libraryltem Title
name name name
author author author
isbn isbn isbn
publicationDate publicationDate publicationDate
libOfCongress libOfCongress libOfCongress
barCodeNumber barCodeNumber Z%
Libraryltem
| GulliversTravels | | MobyDick | barCodeNumber
(a) (b) c)

Figure 6.2 Inappropriate ways to represent abstractions and occurrences

Another very bad solution, shown in Figure 6.2(b), is to create a separate
subclass for each title (i.e. a class GulliversTravels and another class MobyDick).
Information such as name, author, etc. would still be duplicated in each of the
instances of each subclass. Furthermore, this approach seriously restricts the
flexibility of the system — you want to be able to add new books without having
to program new classes.

Figure 6.2(c) shows another invalid solution: making the abstraction class a
superclass of the occurrence class. This would not solve the original problem
presented in this pattern, since, although the attributes in the superclass are
inherited by the subclasses, the data in those attributes is not. For example, even
though there is a name attribute defined in the superclass Title, we would still
have to set the value of this attribute in every instance of LibraryItem.

Related When the abstraction is an aggregate, the occurrences are also typically
patterns aggregates. The result is the Abstraction-Occurrence Square pattern, illustrated
in Figure 6.3.

References This pattern is a generalization of the Title-Item pattern of Eriksson and Penker
(see the ‘For more information’ section at the end of the chapter).

Exercise

EI13 Apply the Abstraction-Occurrence pattern in the following situations. For each
situation, show the two linked classes, the association between the classes, and
the attributes in each class.

226 | Chapter 6

Using design patterns

Figure 6.3

i 1 ScheduledTrai SpecificTrai
«AggregateAbstraction» «AggregateOccurrence» cheduledlrain |, s peciricirain

sk 3k

number date
1 1
*<E *<E]<E]<E
1

*

«PartAbstraction» «PartOccurrence» .
Scheduledleg SpecificLeg
1 %k
scheduledDepTime actualDepTime
scheduledArrTime actualArrTime
% &
origin| 1 1 |destination

Station

The Abstraction-Occurrence Square pattern

(a) The issues of a periodical.
(b) The copies of the issues of a periodical.
(c) The repeats and re-runs of the same television program.

(d) Models of electronic appliances and the individual appliances.

6.3 The General Hierarchy pattern

Context This modeling pattern occurs in many class diagrams. You often find a set of

Problem

Forces

Solution

objects that have a naturally hierarchical relationship. For example, the
relationships between managers and their subordinates in an organization
chart, or the directories (also known as folders), subdirectories and files in a file
system.

Each object in such a hierarchy can have zero or more objects above them in
the hierarchy (superiors), and zero or more objects below them (subordinates).
Some objects, however, cannot have any subordinates — for example the staff
members in an organization chart (as opposed to the managers) or the files in a
file system (as opposed to the directories).

How do you draw a class diagram to represent a hierarchy of objects, in which
some objects cannot have subordinates?

You want a flexible way of representing the hierarchy that naturally prevents
certain objects from having subordinates. You also have to account for the fact
that all the objects share common features.

Create an abstract «Node» class to represent the features possessed by each
object in the hierarchy - one such feature is that each node can have superiors.

Then create at least two subclasses of the «Node» class. One of the subclasses,
«SuperiorNode», must be linked by a «subordinates» association to the superclass;
whereas at least one subclass, «NonSuperiorNode», must not be. The subordinates
of a «SuperiorNode» can thus be instances of either «SuperiorNode» or
«NonSuperiorNode».

Section 6.3

The General Hierarchy pattern

1227

The multiplicity of the «subordinates» association can be optional-to-many or
many-to-many. If it is many-to-many, then the hierarchy of instances becomes
a lattice, in which a node can have many superiors. The ‘optional’ allows for the

case of the top node in the hierarchy, which has no superiors.

Examples In Figure 6.4, there are three kinds of employee in an organization, but only
managers can supervise subordinates. Similarly, only directories can contain
other file system objects. In a user interface, some objects (such as panels) can
contain others; this is illustrated in Figure 6.5. As a final example, in Figure 5.30
a company can have customers, who in turn have other customers, and are the
customers of other companies - the result is a network of customer/service-
provider relationships.

«Node»

«subordinates»

A

] 0.1

«NonSuperiorNode»

«SuperiorNode»

% supervises FileSstem"em contains
Employee
. I 0. ,i\ 0.1
Secretary Technician Manager File Directory

Figure 6.4

contains

| List |

———
Buﬂon| | Label | | Panel | | Window|

Figure 6.5

Ega

Template and examples of the General Hierarchy design pattern

JSi[=1 B9

Ohject-Orignted Software Engineering

Chapter 1 |

Chapter 2

Chapter 3 |

Chapter 4 —

Chapter 5 I

Chapter 6

oo |
QK | Cancel | Quit |

Component classes whose instances form a hierarchy in a user interface. The

example shows a frame, composed of a label (top), a list (left) and two panels. The
first panel (on the right) is in turn composed of four text fields. The other panel (at
the bottom) contains three buttons

Antipatterns A common beginner’s mistake is to model a hierarchy of categories using a
hierarchy of classes, as illustrated in Figure 5.11. This mistake is made because
beginners are taught about inheritance hierarchies, and then immediately think
that every hierarchy should be an inheritance hierarchy.

228 Chapter 6

Using design patterns

Related The Reflexive Association, discussed in Section 5.3, can be considered to be a
patterns pattern. Figures 5.8, 5.12(a) and 5.25(a) show that hierarchies of objects can be
modeled using asymmetric reflexive associations. Doing so, however, does not
allow for the special «NonSuperiorNode» classes that occur in the context of the

General Hierarchy pattern.

The Composite pattern is a specialization of the General Hierarchy pattern. In
the Composite pattern, the association between «SuperiorNode» and «Node» is
an aggregation. A Composite is a recursive container; that is, a container that
can contain other containers. This is the case with directories in a file system
(Figure 6.4) as well as instances of GUIComposite (Figure 6.5).

References The Composite pattern is one of the ‘Gang of Four’ patterns. See the book by
Gamma, Helm, Johnson and Vlissides in ‘For more information.

Exercises

El14 Figure 5.21 shows a hierarchy of vehicle parts. Show how this hierarchy might
be better represented using the General Hierarchy pattern (or more precisely,
by the Composite pattern).

EIl5 Revisit Exercise E91. Did you use the General Hierarchy pattern? If not, then
redo the exercise, showing a hierarchy of various levels of government. Imagine
that municipalities are the lowest levels of government.

EI16 An expression in Java can be broken down into a hierarchy of subexpressions.
For example, (a/(b+c))+(b-func(d)*(e/(f+g))) has (a/b+c)) as one of its higher-
level subexpressions.

(a) Using the General Hierarchy or Composite pattern, create a class diagram
to represent expressions in Java. Hints:

(i) A higher-level expression might have more than two parts.
(ii) The parts of a higher-level expression are connected by operators; how
can these be represented?
(iii) Think about what the «NonSuperiorNodes» must be.
(iv) Some expressions are surrounded by parentheses, while others need
not be; how can this be represented?

(b) Using your class diagram from part (a), create an object diagram for the
example above.

6.4 The Player—Role pattern

Context This modeling pattern can solve modeling problems when you are drawing
many different types of class diagram. A role is a particular set of features

Section 6.4 | 229

The Player-Role pattern

associated with an object in a particular context. An object may play different
roles in different contexts.

For example, a student in a university can be either an undergraduate student
or a graduate student at any point in time — and is likely to need to change from
one of these roles to another. Similarly, a student can also be registered in his or
her program full-time or part-time, as shown in Figure 5.16; in this case, a
student may change roles several times. Finally, an animal may play several of
the roles shown in Figure 5.15, although in this case the roles are unlikely to
change.

Problem How do you best model players and roles so that a player can change roles or
possess multiple roles?

Forces Itis desirable to improve encapsulation by capturing the information associated
with each separate role in a class. However, as discussed in Chapter 5, you want
to avoid multiple inheritance. Also, you cannot allow an instance to change
class.

Solution Create a «Player» class to represent the object that plays different roles. Create
an association from this class to an abstract «Role» class, which is the superclass
of a set of possible roles. The subclasses of this «Role» class encapsulate all the
features associated with the different roles.

If the «Player» can only play one role at a time, the multiplicity between
«Player» and «Role» can be one-to-one, otherwise it will be one-to-many.

Instead of being an abstract class, the «Role» can be an interface. The only
drawback to this variation is that the «Role» usually contains a mechanism,
inherited by all its subclasses, allowing them to access information about the
«Player». Therefore you should only make «Role» an interface if this mechanism
is not needed.

Examples Figure 6.6 shows how an Animal or a Student can take on several roles to solve the
problems posed by Figures 5.14 and 5.15.

The example in the middle of Figure 6.6 shows that an object can have a
varying number of roles. An animal could be aquatic, land-based or both. Note
that we could also have used a role class to record whether an animal is a
carnivore, herbivore or omnivore; however, since this information remains the
same for the life of an animal, we can just use ordinary subclasses.

The bottom example in Figure 6.6 shows that you can have two separate
«Role» superclasses. In this case, a student is characterized by his or her
attendance status (full-time or part-time) and by whether he or she is a graduate
or undergraduate. Both of these types of status can change during the life of a
Student object. The Player—Role pattern with two one-to-one associations makes
it possible to create a full-time undergraduate student, a part-time graduate
student or any other combination.

The Player—Role pattern is also used in the airline system to allow a person to
be both a passenger and an employee. This is illustrated in Figure 5.31.

230 | Chapter 6

Using design patterns

«Player» «AbstractRole»
«Role1» «Role2»
. 1 0.2 .
Animal HabitatRole
/\ typeOffood habitat
[|
Carnivore Herbivore Omnivore AquaticAnimal LandAnimal
AttendanceRole [Il Student] LevelRole

attendance 4 4|eve|

FullTimeStudent PartTimeStudent GraduateStudent | | UndergraduateStudent

Figure 6.6

Antipatterns

Related
patterns

References

Template and examples of the Player-Role design pattern

One way to implement roles is simply to merge all the features into a single
«Player» class and not have «Role» classes at all. This, however, creates an overly
complex class — and much of the power of object orientation is lost.

You could also create roles as subclasses of the «Player» class. But, as we have
already discussed, this is a bad idea if it results in the need for multiple
inheritance or requires an instance to change class.

The Abstraction-Occurrence pattern has a similar structure to the Player-Role
pattern: the player has many roles associated with it, just like the abstraction has
many occurrences. However, the semantics of the two patterns is quite different.
A key distinction is that in the Abstraction-Occurrence pattern, an abstraction
is, as the name says, abstract, while its occurrences tend to be real-world things
such as copies of books. The inverse is true in the Player—Role pattern: the player
is normally a real-world entity (e.g. a person) while its roles are abstractions.

This pattern appears in the OMT book by Rumbaugh et al. (1991), referred to in
the ‘For more information’ section of Chapter 5. At the time that book was
written, however, the term ‘pattern’ had not yet taken on its current use.

Section 6.5 | 231

The Singleton pattern

Exercise

EIl7 Draw a class diagram, applying the Player-Role pattern in the following
circumstances.

(a) Users of a system have different privileges.
(b) Managers can be given one or more responsibilities.

(c) Your favorite sport (football, baseball, etc.) in which players can play at
different positions at different times in a game or in different games.

6.5 The Singleton pattern

Context In software systems, it is very common to find classes for which you want only
one instance to exist. Such a class is called a singleton.

For example, the Company or University classes in systems that run the business
of that company or university might be singletons. Another example is the
MainWindow class in a graphical user interface for systems that can only have one
main window open.

Problem How do you ensure that it is never possible to create more than one instance of
a singleton class?

Forces Ifyou usea public constructor, you cannot offer the guarantee that no more than
one instance will be created.
The singleton instance must also be accessible to all classes that require it,
therefore it must often be public.

Solution In a singleton class, create the following:
B A private class variable, often called theInstance. This stores the single instance.

B A public class method (static method), often called getInstance. The first time
this method is called, it creates the single instance and stores it in theInstance.
Subsequent calls simply return theInstance.

B A private constructor, which ensures that no other class will be able to create an
instance of the singleton class.

Example In an employee management system (Figure 6.7), the Company class might be the
central class that encapsulates several important features related to the system as
a whole. The Singleton implementation ensures that only one instance of this
important class can exist. The public class method getInstance makes this
instance globally accessible.

Note The Singleton pattern should not be overused, since the singleton instance is
effectively a global variable, and the use of global variables should be minimized.

References The Singleton pattern is one of the ‘Gang of Four’ patterns.

232| Chapter 6

Using design patterns

Figure 6.7

Exercise

EII8

«Singleton»

thelnstance

getlnstance()

Company

if (theCompany==null)

theCompany theCompany= new Company();

Company() «private»
geflnstance() - — — |- - - return theCompany;

Template and example of the Singleton design pattern

Discuss how the Singleton pattern could be generalized to the case where a
class could be limited to have a maximum of N instances.

6.6 The Observer pattern

Context

Problem

Forces

Solution

When you create a two-way association between two classes, the code for the
classes becomes inseparable. When you compile one, the other one has to be
available since the first one explicitly refers to it. This means that if you want to
reuse one of the classes, you also have to reuse the other; similarly, if you change
one, you probably have to change the other.

How do you reduce the interconnection between classes, especially between
classes that belong to different modules or subsystems? In other words, how do
you ensure that an object can communicate with other objects without knowing
which class they belong to?

You want to maximize the flexibility of the system to the greatest extent possible.

Create an abstract class we will call the «Observable» that maintains a collection
of «Observer» instances. The «Observable» class is very simple; it merely has a
mechanism to add and remove observers, as well as a method notifyObservers
that sends an update message to each «Observer». Any application class can
declare itself to be a subclass of the «Observable» class. This is illustrated in
Figure 6.8.

«Observer» is an interface, defining only an abstract update method. Any class
can thus be made to observe an «Observable» by declaring that it implements
the interface, and by asking to be a member of the observer list of the
«Observable». The «Observer» can then expect a call to its update method
whenever the «Observable» changes.

Section 6.6 | 233

The Observer pattern

«Observable» «interface»
addObserver() % #| «Observer»
notifyObservers() update()

«ConcreteObservable» «ConcreteObserver»

*

«interface»

Observable I

Observer
Observers are '
notified when a new .
Forecaster forecast is ready WeatherViewer
Figure 6.8 Template and example of the Observer design pattern

Using this pattern, the «Observable» neither has to know the nature or the
number of the classes that will be interested in receiving the update messages, nor
what they will do with this information.

Examples Java has an Observer interface and an Observable class. The Java mechanism is a
specific implementation of this pattern.

In order to obtain a weather forecast, a system has to perform a long sequence
of calculations. Suppose that these computations are under the control of a
Forecaster object, as shown in Figure 6.8. When a new forecast is ready this
object notifies all interested instances. The Forecaster is therefore the observable
object. One observer might be a user interface object responsible for displaying
the weather forecast. Another observer might use weather forecasts to plan the
schedule of some workers — the workers might do one set of tasks on rainy days
and another set on sunny days.

The Observer pattern is widely used to structure software cleanly into
relatively independent modules. It is the basis of the MVC architecture
presented in Chapter 9. It is also used in an additional layer of the OCSF
framework as presented in Section 6.14.

Antipatterns Beginners tend to connect an observer directly to an observable so that they
both have references to each other. We pointed out earlier that this means you
cannot plug in a different observer.

Another mistake is to make the observers subclasses of the observable. This
will not work because then each observer is at the same time an observable. It is
not therefore possible to have more than one observer for an observable.

References The Observer pattern is one of the ‘Gang of Four” patterns. It is also widely
known as Publish-and-Subscribe (the observers are Subscribers and the
observable is a Publisher).

234

Chapter 6

Using design patterns

Exercises

EIN9

EI20

Look at the Java documentation and explain the similarities or differences
between the mechanism behind the ActionEvent and ActionListener classes and
the Observer pattern.

Use the Observer pattern to model a small system where several different
classes would be notified each time an item is added or removed from an
inventory.

6.7 The Delegation pattern

Context

Problem

Forces

Solution

Examples

You need an operation in a class and you realize that another class already has
an implementation of the operation. However, it is not appropriate to make your
class a subclass and inherit this operation, either because the isa rule does not
apply, or because you do not want to reuse all the methods of the other class.

How can you most effectively make use of a method that already exists in the
other class?

You want to minimize development cost and complexity by reusing methods.
You want to reduce the linkages between classes. You want to ensure that work
is done in the most appropriate class.

Create a method in the «Delegator» class that does only one thing: it calls a
method in a neighboring «Delegate» class, thus allowing reuse of the method for
which the «Delegate» has responsibility. By ‘neighboring, we mean that the
«Delegate» is connected to the «Delegator» by an association. This is illustrated
in Figure 6.9.

Normally, in order to use delegation an association should already exist between
the «Delegator» and the «Delegate». This association may be bidirectional or else
unidirectional from «Delegator» to «Delegate». However, it may sometimes be
appropriate to create a new association just so that you can use delegation —
provided this does not increase the overall complexity of the system.

Delegation can be seen as providing selective inheritance.

As shown in Figure 6.9, a Stack class can be easily created from an existing
collection class such as LinkedList. The push method of Stack would simply call
the addFirst method of LinkedList, the pop method would call the removeFirst
method and the isEmpty method would delegate to the method of the same
name. The other methods of the LinkedList class would not be used since they
do not make sense in a Stack.

The bottom example in Figure 6.9 shows two levels of delegation in the airline
system. Booking has a f1ightNumber method that does nothing other than delegate
to the method of the same name in its neighbor, SpecificFlight. This in turn
delegates to RegularFlight.

Section 6.7 | 235

The Delegation pattern

Delegat
delegatinglethod() \\ Ceegeer] «Delegaten
----- - delegatingMethod() method()
delegate.method() ;

}

Stack LinkedList

push() ﬁ C] f

[S L push() addFirst()

list.addFirst(); pop() addLast()

} isEmpty() addAfter()
removeFirst()
removelast()
delete()
isEmpty()

Booking | * ! SpecificFlight |* ! RegularFlight
flightNumber() flightNumber() flightNumber()
flightNumber () flightNumber ()

{ {

return return
specificFlight.flightNumber () ; } regularFlight.flightNumber () ;

Figure 6.9 Template and examples of the Delegation design pattern

Antipatterns The Delegation pattern brings together three principles that encourage flexible
design:

(a) favoring association instead of inheritance when the full power of
inheritance is not needed;

(b) avoiding duplication of chunks of code; and

(c) accessing ‘nearby’ information only. Violation of any of these principles
should be avoided, as explained below.

Instead of using delegation, it is common for people to overuse generalization
and inherit the method that is to be reused - for example, making Stack a
subclass of LinkedList. The biggest problem with this is that some of the methods
of LinkedList, such as addAfter, do not make sense in a Stack, yet they would be
available.

Instead of creating a single method in the «Delegator» that does nothing other
than call a method in the «Delegate», you might consider having many different
methods in the «Delegator» call the delegate’s method. For example, all the
methods in Booking could independently call specificFlight.flightNumber|().
Unfortunately, this would create many more linkages in the system. It would be
better to ensure that only one method in the «Delegator» calls the method in the
«Delegate». Otherwise, when you make a change to the method in the
«Delegate», you may have to change all of the calling methods.

236

Chapter 6
Using design patterns

The Law of Demeter

A fundamental principle of the Delegation pattern is that a method should only communicate with
objects that are neighbors in the class diagram. This is a special case of the ‘Law of Demeter’, which
was formulated by a team from Northeastern University in Boston.

The Law of Demeter says, in short, ‘only talk to your immediate friends’. In software
design, this means that a method should only access data passed as arguments, linked via
associations, or obtained via calls to operations on other neighboring data. The rationale is
that this limits the impact of changes, and makes it easier for software designers to
understand that impact. If each method only communicates with its neighbors, then it should
only be impacted when those neighbors change, not when changes occur in more distant
parts of the system.

The Law of Demeter was named after Demeter, the ancient Greek goddess of agriculture,
because its developers were interested in ‘growing’ software incrementally. Adhering to the
Law of Demeter should make incremental development much easier.

Finally, you want to ensure that in delegation a method only accesses
neighboring classes. For example it would not be good for Booking’s £1ightNumber
method to be written as:

return specificFlight.regularFlight.flightNumber ();

This is bad because the further a method has to reach to get its data, the more
sensitive it becomes to changes in the system. Maintenance becomes easier if
you know that a change to a class will only affect its neighbors.

Related The Adapter and Proxy patterns, discussed below, both use delegation.
patterns

References The Delegation pattern is mentioned in the book by Grand (see ‘For more
information’ at the end of the chapter).

Exercise

EI2] Find as many situations as you can where the Delegation pattern should be
applied in Figure 5.25(c).

6.8 The Adapter pattern

Context You are building an inheritance hierarchy and you want to incorporate into it a
class written by somebody else - that is, you want to reuse an existing unrelated
class. Typically the methods of the reused class do not have the same name or
argument types as the methods in the hierarchy you are creating. The reused
class is also often already part of its own inheritance hierarchy.

Section 6.8 | 237

The Adapter pattern

Problem How do you obtain the power of polymorphism when reusing a class whose
methods have the same function but do not have the same signature as the other
methods in the hierarchy?

Forces You do not have access to multiple inheritance or you do not want to use it.

Solution Rather than directly incorporating the reused class into your inheritance
hierarchy, instead incorporate an «Adapter» class, as shown in Figure 6.10. The
«Adapter» is connected by an association to the reused class, which we will call
the «Adaptee». The polymorphic methods of the «Adapter» delegate to methods
of the «Adaptee». The delegate method in the «Adaptee» may or may not have
the same name as the delegating polymorphic method.

«Superclass» ?olymorphicMethod()

polymorphicMethod() return

adaptee.adaptedMethod() ;
Zﬁ }

«Adaptee»

-

«Adapter»

adaptedMethod

volume ()
Shape3D

return

volume() adaptee.calcVolume();

Sphere Torus 1 1 TimsTorus

calcVolume()

Figure 6.10 Template and example of the Adapter design pattern

Other code that accesses facilities of an «Adapter» object will be unaware that
it is indirectly using the facilities of an instance of the «Adaptee».

Instead of being part of an inheritance hierarchy, an «Adapter» can be one of
several classes that implement an interface.

Example As shown in Figure 6.10, imagine you are creating a hierarchy of three-
dimensional shapes. However, you want to reuse the implementation of an
equivalent class called TimsTorus. You do not want to modify the code of
TimsTorus, since it is also being used by others; therefore you cannot make
TimsTorus a subclass of Shape3D. You therefore make Torus an «Adapter». Its
instances have a link to an instance of TimsTorus, and delegate all operations to
TimsTorus.

Adapters are sometimes called wrappers. The Java wrapper classes Integer,
Float, Double etc. are adapters for the Java primitive types.

A variation of the Adapter design pattern is used in an extended version of the
OCSF framework, as explained in Section 6.14.

238

Chapter 6

Using design patterns

Related

patterns

[|

[|

[|

References

Exercise

El22

The Adapter pattern is one of several patterns that make it easier to use other
classes. Other patterns discussed below that do this are:

Facade: provides a single class to make it easy to access a whole subsystem of
classes.

Read-Only Interface: provides an interface that prevents changing instances of
another class.

Proxy: provides a lightweight class that makes it unnecessary to always have to
deal with a heavyweight class.

The Adapter pattern is one of the ‘Gang of Four’ patterns.

Explain whether or not the MouseAdapter class defined in Java is an
implementation of the Adapter pattern.

6.9 The Fagade pattern

Context

Problem

Forces

Solution

Example

References

Often, an application contains several complex packages. A programmer
working with such packages has to manipulate many different classes.

How do you simplify the view that programmers have of a complex package?

It is hard for a programmer to understand and use an entire subsystem - in
particular, to determine which methods are public. If several different
application classes call methods of the complex package, then any modifications
made to the package will necessitate a complete review of all these classes.

Create a special class, called a «Fagade», which will simplify the use of the
package. The «Fagade» will contain a simplified set of public methods such that
most other subsystems do not need to access the other classes in the package.
The net result is that the package as a whole is easier to use and has a reduced
number of dependencies with other packages. Any change made to the package
should only necessitate a redesign of the «Facade» class, not classes in other
packages.

The airline system discussed in Chapter 5 has many classes and methods. Other
subsystems that need to interact with the airline system risk being ‘exposed’ to
any changes that might be made to it. We can therefore define the class Airline
to be a «Fagade», as shown in Figure 6.11. This provides access to the most
important query and booking operations.

This pattern is one of the ‘Gang of Four’ patterns.

Section 6.10 | 239

The Immutable pattern

«Facade» «PackageClass1»
Airline] X RegularFlight
findFlight()

makeBooking()
deleteBooking()

*

Person

Figure 6.11 Template and example of the Facade design pattern

Exercise

EI23 Suppose that you want to be able to use different database systems in different
versions of an application. To facilitate interchanging databases, you create a
Facade interface plus Fagade classes associated with each specific database
system. Draw the class diagram that corresponds to this.

6.10 The Immutable pattern

Context An immutable object is an object that has a state that never changes after
creation. An important reason for using an immutable object is that other
objects can trust its content not to change unexpectedly.

Problem How do you create a class whose instances are immutable?

Forces The immutability must be enforced. There must be no loopholes that would
allow ‘illegal’ modification of an immutable object.

Solution Ensure that the constructor of the immutable class is the only place where the
values of instance variables are set or modified. In other words, make sure that
any instance methods have no side effects by changing instance variables or
calling methods that themselves have side effects. If a method that would
otherwise modify an instance variable must be present, then it has to return a
new instance of the class.

Example In an immutable Point class, the x and y values would be set by the constructor
and never modified thereafter. If a translate operation were allowed to be
performed on such a Point, a new instance would have to be created. The object
that requests the translate operation would then make use of the new translated
point.

In Figure 2.8, imagine there was a method changeScale(x,y) in an immutable
version of class Circle. This would return the same object if x and y were both
1.0, a new Circle if x and y were both equal, and a new Ellipse otherwise.
Similarly, the changeScale(x,y) method in an immutable Ellipse class would

240|

Chapter 6

Using design patterns

Related
patterns

References

Exercise

El24

return a new Circle if the changeScale(x,y) would result in the semi-major axis
equaling the semi-minor axis.

The Read-Only Interface pattern, described next, provides the same capability
as Immutable, except that certain privileged classes are allowed to make changes
to instances.

This pattern was introduced by Grand (see ‘For more information’ at the end of
the chapter).

Imagine that all the classes in Figure 2.8 were immutable. What other methods
might be added to the system that would return instances of a different class
from the class in which they are written?

6.11 The Read-Only Interface pattern

Context

Problem

Forces

Solution

Example

This is closely related to the Immutable pattern. You sometimes want certain
privileged classes to be able to modify attributes of objects that are otherwise
immutable.

How do you create a situation where some classes see a class as read-only (i.e.
the class is immutable) whereas others are able to make modifications?

Programming languages such as Java allow you to control access by using the
public, protected and private keywords. However, making access public makes it
public for both reading and writing.

Create a «Mutable» class as you would create any other class. You pass instances
of this class to methods that need to make changes.

Then create a public interface we will call the «ReadOnlyInterface», that has
only the read-only operations of «Mutable» - that is, only operations that get its
values. You pass instances of the «ReadOnlyInterface» to methods that do not
need to make changes, thus safeguarding these objects from unexpected
changes. The «Mutable» class implements the «ReadOnlyInterface».

This solution is shown in Figure 6.12.

Figure 6.12 shows a Person interface that can be used by various parts of the
system that have no right to actually modify the data. The MutablePerson class
exists in a package that protects it from unauthorized modification.

The Read-Only Interface design pattern can also be used to send data to
objects in a graphical user interface. The read-only interface ensures that no
unauthorized modifications will be made to this data. We present this usage in
the description of the MVC architecture in Chapter 9.

Section 6.12 | 241

The Proxy pattern

«interface» «interface»
«ReadOnlylnterface» [<£ *! «UnprivilegedClass» Person
getAttribute() getName()

i 5
«Mutabley Mutableperson
attribute «private» * * «Mutator» firstName
lastName
etAttribute -
9 1ou 0 setFirstName()
setAttribute()

setlastName()
getName()

Figure 6.12 Template and example of the Read-Only Interface design pattern

Antipattern You could consider making the read-only class a subclass of the «Mutable» class.
But this would not work since whole point of this pattern is that you want a
single class with different sets of access rights.

References This pattern was introduced by Grand (see ‘For more information’ at the end of
the chapter).

Exercise

EI25 Create a read-only version of the SpecificFlight class shown in Figures 5.32 and
5.33. The purpose of this would be so that you could pass instances to other
subsystems safely.

6.12 The Proxy pattern

Context This pattern is found in class diagrams that show how aspects of the architecture
of a system will be implemented.

Often, it is time-consuming and complicated to obtain access in a program to
instances of a class. We call such classes heavyweight classes. Instances of a
heavyweight class might, for example, always reside in a database. In order to
use the instances in a program, a constructor must load them with data from the
database. Similarly, a heavyweight object may exist only on a server: before
using the object, a client has to request that it be sent; the client then has to wait
for the object to arrive.

In both the above situations, there is a time delay and a complex mechanism
involved in creating the object in memory. Nevertheless, many other objects in
the system may want to refer to or use instances of heavyweight classes.

It is very common for all the domain classes to be heavyweight classes. Sets of
instances of these must also be managed by heavyweight versions of the
collection classes used to implement associations (such as ArrayList or Vector).

242| Chapter 6

Using design patterns

Problem How can you reduce the need to load into memory large numbers of
heavyweight objects from a database or server, when not all of them will be
needed?

A related problem is this: if you load one object from a database or server, how
can you avoid loading all the other objects that are linked to it?

Forces You want all the objects in a domain model to be available for programs to use
when they execute a system’s various responsibilities. It is also important for
many objects to persist from run to run of the same program.

However, in a large system it would be impractical for all the objects to be
loaded into memory whenever a program starts. Memory size is limited; it takes
a long time to load a database into memory; and only a small number of the
objects in the database will actually be needed during any particular run of a
program. Keeping all objects in memory would also make it difficult for
multiple programs to share the same objects.

It would be ideal to be able to program the application as if all the objects were
located in memory. The details of how the objects are actually stored and loaded
should be transparent to the programmer. This provides for separation of
concerns: some programmers can worry about loading and saving of objects,
while others can be concerned with implementing the responsibilities of the
domain model.

Solution Create a simpler version of the «HeavyWeight» class. We will call this simpler
version a «Proxy». The «Proxy» has the same interface as the «HeavyWeight»,
therefore programmers can declare variables without caring whether a «Proxy»
or its «HeavyWeight» version will be put in the variable. This is illustrated in
Figure 6.13.

«interface»
«ClasslF»

0.1 0.1

«Clients [2« Proxy» «HeavyWeight»

List loaded into local memory Student

A A only when needed. A A

«interface» The list elements will bem‘ «interface»

0.10.1 0.1 0.

ListProxy PersistentList StudentProxy PersistentStudent

Figure 6.13 Template and examples of the Proxy design pattern

The «Proxy» object normally acts only as a placeholder. If any attempt is made
to perform an operation on the proxy then the proxy delegates the operation to
the «HeavyWeight». When needed, the «Proxy» undertakes the expensive task

Section 6.13 | 243

The Factory pattern

of obtaining the real «<HeavyWeight» object. The proxy only needs to obtain the
«HeavyWeight» once; subsequently it is available in memory and access is
therefore fast.

Some proxies may have implementations of a limited number of operations
that can be performed without the effort of loading the «HeavyWeight».

In some systems, most of the variables manipulated by the domain model
actually contain instances of «Proxy» classes.

Examples In Figure 6.13, a software designer may declare that a variable is to contain a
List. This variable would, however, actually contain a ListProxy, since it would
be expensive to load an entire list of objects into memory, and the list might not
actually be needed. However, as soon as an operation accesses the list, the
ListProxy might at that point create an instance of PersistentList in memory. On
the other hand, the ListProxy might be able to answer certain queries, such as the
number of elements in the list, without going to the effort of loading the
PersistentList.

Now, imagine that the PersistentList was actually a list of students. These
objects might also be proxies — in this case, instances of StudentProxy. Again,
instances of PersistentStudent would only be loaded when necessary.

The Proxy pattern is widely used in many software architectures. We will
discuss it again in the context of the Broker architectural pattern in Chapter 9.

Antipatterns Instead of using proxy objects, beginner designers often scatter complex code
around their application to load objects from databases.
A strategy that only works for very small systems is to load the whole database
into memory when the program starts.

Related The Proxy pattern is one of several patterns that obtain their power from
patterns delegating responsibilities to other classes, hence it uses the Delegation pattern.

References The Proxy pattern is one of the ‘Gang of Four’ patterns.

Exercise

EI126 Discuss the advantages of using an image-proxy when manipulating the photos
in a digital photo album application. What operations could conceivably be
performed by the proxy without loading the heavyweight image into memory?

6.13 The Factory pattern
Context You have a reusable framework that needs to create objects as part of its work.
However, the class of the created objects will depend on the application.

Problem How do you enable a programmer to add a new application-specific class
«ApplSpecificClass» into a system built on such a framework? And how do you

244|

Chapter 6

Using design patterns

Forces

Solution

arrange for the framework to instantiate this class, without modifying the
framework?

You want the benefits of a framework, but retain the flexibility of having the
framework create and work with application-specific classes that the framework
does not yet know about.

The framework delegates the creation of instances of «ApplSpecificClass» to a
specialized class «ApplSpecificFactory». The «ApplSpecificFactory» imple-
ments a generic interface «Factory» defined in the framework. The «Factory»
declares a method whose purpose is to create some subclass «AppSpecificClass»
of a class we will call «GenericClass». This is illustrated in Figure 6.14.

«CreationRequester»

*

«GenericClass»

T

«ApplSpecificClass»

create

«interface»
«Factory»

createlnstance()

AN

MediaFileManager

«ApplSpecificFactory»

«interface»
MediaFactory

setMediaFactory()
createMedial(filename)
* VAN
MediaFile E
XYZlmage |----| XYZImageFactory
create

Figure 6.14

Example

Antipatterns

References

Template and example of the Factory design pattern

As is shown in right-hand diagram of Figure 6.14, suppose you have a
framework with a class called MediaFile, whose subclasses will represent the
contents of various types of audio-visual media files. You want to create a
subclass of this, XYZImage, to represent your new media format; and you need to
ensure the framework class MediaFileManager can instantiate this. You therefore
create a factory class, XYZImageFactory, whose sole job is to create instances of
XvzImage. This implements the MediaFactory interface. You initiate the system to
create XYZImages by calling the setMediaFactory method of MediaFileManager; this
creates a link to an instance of XYZImageFactory. Each time the MediaFileManager
needs to create a new MediaFile object, it calls the createMedia method as
implemented by XYZImageFactory; this then creates a new XYZImage.

You could get rid of the factory and instead modify the framework code in
MediaFileManager to force it to always instantiate X¥ZImage directly. However, this
would only be possible if you have access to the source of the framework; and
would not work if you needed to be able to work with several different
«Factory»—«ApplSpecificClass» pairs. As a general principle, modifying a
framework should always be considered forbidden.

The Factory pattern is one of the ‘Gang of Four’ patterns.

Section 6.13 | 245

The Factory pattern

Exercises

EI27 1In a given game, carnivore and herbivore animals are created at random
instants by the game engine. Depending on the country selected by the user, a
factory for the appropriate carnivores and herbivores is loaded (e.g. one that
will create lions and gazelles in Kenya, but cougars and beavers in Canada).
Draw the class diagram to represent this idea.

EI28 Find the design pattern that would be most appropriate for the following
problems:

(a) You are building an inheritance hierarchy of products that your company
sells; however, you want to reuse several classes from one of your suppliers.
You cannot modify your suppliers’ classes. How do you ensure that the
facilities of the suppliers’ classes can still be used polymorphically?

(b) You want to allow operations on instances of RegularPolygon that will distort
them such that they are no longer regular polygons. How do you allow the
operations without raising exceptions?

(c) Your program manipulates images that take a lot of space in memory. How
can you design your program so that images are only in memory when
needed, and otherwise can only be found in files?

(d) You have created a subsystem with 25 classes. You know that most other
subsystems will only access about 5 methods in this subsystem; how can
you simplify the view that the other subsystems have of your subsystem?

(e) You are developing a stock quote framework. Some applications using this
framework will want stock quotes to be displayed on a screen when they
become available; other applications will want new quotes to trigger certain
financial calculations; yet other applications might want both of the above,
plus having quotes transmitted wirelessly to a network of pagers. How can
you design the framework so that various different pieces of application
code can react in their own way to the arrival of new quotes?

EI29 The 1terator interface, as defined in Java, is an implementation of what is called
the ‘Tterator’ design pattern. Study the Java documentation describing Iterator,
then using the format discussed in this chapter, write a description of the
Iterator pattern, with sections that define its context, problem, forces and
solution.

EI130 (Advanced) In order to improve the access to information stored in a database,
several applications use the concept of a cache. The basic principle is to keep in
local memory objects that would normally be destroyed, because it is expected
that these objects will be requested again later on. In this way, when they are
indeed required again, access to them is very fast.

246|

Chapter 6

Using design patterns

(a) Create a design pattern that describes this idea. Use the format presented in
this chapter.

(b) Scan the literature on design patterns and look for the Cache Management
design pattern. Compare it with the solution you proposed.

6.14 Enhancing OCSF to employ additional design patterns

The Object Client-Server Framework (OCSF) presented in Chapter 3 provides
a simple way to set up a client-server application rapidly. In this section, we
introduce additional features of OCSF and show how the use of design patterns
can greatly increase flexibility. As with the basic classes of OCSEF, code for the
extensions discussed here is available on the books web site (http://
www.lloseng.com).

Client connection factory

The first extension to the basic framework is the addition of a Factory to handle
client connections. To understand the usefulness of this mechanism, let us first
review client connection management on the server side. Each time a new client
connects to the server, a ConnectionToClient object is created. This object defines
a thread that manages all communication with that particular client. All
messages received from the client are passed on to the handleMessageFromClient
method in a subclass of AbstractServer. This method is synchronized so that if
two ConnectionToClient threads need to access the same resource (e.g. an instance
variable of the server) then they won't interfere with each other — only one call
to handleMessageFromClient will execute at a time.

However, there are some circumstances when you might want to allow
developers to create application-specific subclasses of ConnectionToClient:

You might not like having all message handling processed sequentially in the
synchronized handleMessageFromClient in the server object. Instead you might
want to have client message handling take place in a version of
handleMessageFromClient in a special subclass of ConnectionToClient. This could
still be synchronized if you like, but it would be synchronized on the
ConnectionToClient object in order that the processing of messages from
different clients could be done concurrently.

You might want to have different handleMessageFromClient methods in different
subclasses of ConnectionToClient. A different subclass of ComnectionToClient
could, for example, be created to handle clients in your local area network, as
opposed to clients somewhere else on the Internet.

To enable the server class to instantiate an application-specific subclass of
ConnectionToClient, OCSF provides an optional Factory mechanism. There are two
keys to this. The first key is an interface called AbstractConnectionFactory (see Figure
6.15). You create an application-specific factory class that implements the

Section 6.14 | 247

Enhancing OCSF to employ additional design patterns

createConnection method in this interface. Your factory class will in turn create
instances of your own subclass of ConnectionToClient. The second key is the method
setConnectionFactory found in AbstractServer. Your server class calls this to ensure
that whenever a new client attempts to connect, your factory will be directed to
instantiate your subclass of ConnectionToClient to handle the connection.

To use the OCSF factory mechanism, you therefore need to do the following:

1. Create your subclass of ConnectionToClient. Its constructor must have the same
signature as ConnectionToClient, and it must call the constructor of
ConnnectionToClient using the super keyword. Your class will also normally want
to override handleMessageFromClient; if this method returns true, the version of
handleMessageFromClient in your server class will also be subsequently called.

2. Create your factory class that simply defines a method for the createConnection
operation of the AbstractConnectionFactory interface. Typically, the method
would look like this:

protected ConnectionToClient createConnection(
ThreadGroup group, Socket clientSocket,
AbstractServer server) throws IOException

return new Connection(group,clientSocket,server);

}
3. Arrange for the server make the following call before it starts listening:

setConnectionFactory(new MyConnectionFactory());

Observable layer
A second extension to the OCSF framework is the addition of an Observable
layer. We will describe the client side, but the server side works the same way.

In the basic 0CSF, a message received by a client is processed by the subclass of
AbstractClient that implements the handleMessageFromServer abstract method.
Each time a new application is developed, therefore, the AbstractClient class
must be subclassed.

The Observer pattern provides an alternative mechanism for developing a
client. Any number of «Observer» classes can ask to be notified when something
‘interesting’ happens to the client - the arrival of a message or the closing of a
connection, for example. We would therefore like to have a subclass of
AbstractClient that is an «Observable». Unfortunately, since Java does not
permit multiple inheritance, we cannot make it a subclass of the Observable class
itself. Instead, we use the Adapter pattern, as shown in Figure 6.15.

The extended OCSF has the class ObservableClient. This has exactly the same
interface as AbstractClient, except that it is a subclass of Observable. It is also an
adapter: it delegates methods such as sendToServer, setPort, etc. to instances of a
concrete subclass of AbstractClient called AdaptableClient. Designers using
ObservableClient never need to know that AdaptableClient exists.

248 Chapter 6

Using design patterns

«interface»
AbstractConnectionFactory

0.1

createConnection()

AbstractClient AbstractServer
Z% Z% I *| ConnectionToClient
AdaptableClient AdaptableServer
connectionEstablished() clientConnected()
connectionClosed() clientDisconnected|()
handleMessageFromServer() Observable serverStarted()
1 serverStopped()
4 handleMessageFromClient()
1
| | I
ObservableClient ObservableServer

openConnection() listen()

closeConnection() stoplistening()

sendToServer() close()

isConnected() sendToAllClients()

getPort() isListening()

setPort() getClientConnections()

getHost() getNumberOfClients()

setHost() getPort()

getlnetAddress|) setPort()

handleMessageFromServer() clientConnnected()

connectionClosed|() clientDisconnected|)

connectionEstablished() serverStarted()

serverStopped|()
handleMessageFromClient()

Figure 6.15 The Object Client-Server Framework with extensions to employ the Observable
and Factory design patterns

Implementation of the Observable layer
The following are some of the highlights of the implementation of the client
side:

B The class AdaptableClient, as the concrete subclass of AbstractClient, provides
the required concrete implementation of handleMessageFromServer. It also
provides implementations of the hook methods connnectionClosed and
connectionEstablished. All that these three callback methods do is delegate to
the ObservableClient. Their structure is as follows:

callbackMethod ()

{
observable.callbackMethod() ;

}

B There is always a one-to-one relationship between an AdaptableClient and an
ObservableClient. Instances of both these classes must exist.

Section 6.14 | 249

Enhancing OCSF to employ additional design patterns

B All the service methods in ObservableClient (such as openConnection) simply
delegate to the AdaptableClient. They have the following structure:

serviceMethod ()
{
return adaptable.serviceMethod();

}

B The method handleMessageFromServer in ObservableClient is implemented as
follows:

public void handleMessageFromServer (Object message)
{

setChanged() ;

notifyObservers (message) ;

}

B The other callback methods in ObservableClient, such as the hook method
connectionClosed, do nothing. A designer could elect to create a subclass of
ObservableClient which might implement connectionClosed like this:

public void connectionClosed()
{
setChanged() ;
notifyObservers ("connectionClosed");

}

The server side is implemented analogously, except that the instance of
ConnectionToClient could also be sent to the observers.
Some important advantages of using the Observable layer of OCSF are:

1. Different types of messages can be processed by different classes of observer.
For example, different parts of a user interface might update themselves when
specific messages are received; they would ignore the other messages.

2. Programmers using the ObservableClient or ObservableServer need to know very
little about these classes. There is thus a better separation of concerns between
the communication subsystem (OCSF) and different application subsystems.

Exercise

EI3]l In the Observable layer of OCSE the «classes ObservableClient and
ObservableServer are similar to adapters in the sense that their main function is
to delegate to the adaptable classes. In what way do they differ from true
adapters? You can look at the design presented above to answer this, but it may
also help if you study the source code.

250

Chapter 6

Using design patterns

Using the Observable layer

In order to connect a class to the observable layer of OCSEF, the procedure is as
follows:

. Create the application class that implements the Observer interface (note that

this is not a subclass of any of the framework classes).

. Register an instance of the new class as an observer of the ObservableClient (or

ObservableServer). Typically, you would do this in the constructor, in the
following manner:

public MessageHandler (Observable client)

{

client.addObserver (this);

}

. Define the update method in the new class. Normally a given class will react

only to messages of a particular type. In the following example, our application
class is only interested in messages that are of class SomeClass.

public void update(Observable obs, Object message)
{

if (message instanceOf SomeClass)

{

// process the message
}
}

If message is a String, a condition in the if block could be added to determine
what to do with the message.

6.15 Difficulties and risks when using design patterns

The following are the key difficulties to anticipate when designing and using
design patterns:

Patterns are not a panacea. Whenever you see an indication that a pattern
should be applied, you might be tempted to apply the pattern blindly. However,
this can lead to unwise design decisions. For example, you do not always need
to apply the Fagade pattern in every subsystem; adding the extra class might
make the overall design more complex, especially if instances of many of the
classes in the subsystem are passed as data to methods outside the subsystem.
Resolution. Always understand in depth the forces that need to be balanced, and
when other patterns better balance the forces. Also, make sure you justify each
design decision carefully.

Developing patterns is hard. Writing a good pattern takes considerable work.
A poor pattern can be hard for other people to apply correctly, and can lead

Section 6.17 | 251

For more information

them to make incorrect decisions. It is particularly hard to write a set of forces
effectively.

Resolution. Do not write patterns for others to use until you have considerable
experience both in software design and in the use of patterns. Take an in-depth
course on patterns. Iteratively refine your patterns, and have them peer reviewed
at each iteration.

6.16 Summary

Applying patterns to the process of creating class diagrams helps you to create
better models. Patterns help you to avoid common mistakes and to create
systems that are simpler and more flexible.

Some of the more important patterns that occur in domain models include
Abstraction—-Occurrence, General Hierarchy and Player-Role. Observer,
Adapter and Factory are patterns that frequently occur in complete system class
diagrams. Immutable, Fagade and Proxy are typically applied when the modeler
is moving towards a more detailed stage of design.

The patterns can also be categorized according to the principles they embody.
The Delegation pattern is a fundamental pattern that prevents excessive
interconnection among different parts of a system. Abstraction—-Occurrence,
Observer and Player-Role also help increase separation of concerns. Adapter,
Fagade and Proxy help the developer to reuse the facilities of other classes.
Immutable and Read-Only Interface help protect objects from unexpected
changes.

6.17 For more information

The following are some of the many available resources about patterns:

B The Patterns Home Page: http://www.hillside.net/patterns/ — an extensive list
of resources about patterns

M A reference source for design patterns in Java: http://www.fluffycat.com/java/
patterns.html

M Brad Appleton’s description of patterns: http://www.cmcrossroads.com/
bradapp/docs/patterns-intro.html

M E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, October 1994. This book
is the most widely cited book about patterns. Its authors are often referred to as
the ‘Gang of Four’

M C. Alexander, A Pattern Language, Oxford University Press, 1977. The classic
book by the originator of the patterns movement

252

Chapter 6

Using design patterns

B H-E. Eriksson and M. Penker, Business Modeling with UML: Business Patterns

at Work, Wiley, 2000

B M. Grand, Patterns in Java Volume 1: A Catalog of Reusable Design Patterns

Illustrated with UML, 2nd edition, Wiley, 2002

B W. H. Brown, R. C. Malveau, H. W. McCormick III and T. J. Mowbray,

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis, Wiley,
1998. A summary of many of the key mistakes that software developers and
managers make

Project exercises

El32

EI33

El34

EI35

Summarize the advantages and disadvantages of:
(a) The observable layer of OCSF.

(b) Creating a subclass of ConnectionToClient (and instantiating it using the
factory).

Draw an object diagram showing an instance of a subclass of AbstractServer
with a ConnectionFactory that has created three instances of two different
subclasses of ConnectionToClient

Modify the SimpleChat system so that it uses the Observable layer of the OCSE
The number of changes you make should be minimized, and the external
interface to the system should not change. When you complete this exercise,
you will have completed Phase 4 of SimpleChat.

Examine your class diagram for the Small Hotel Reservation System from
Chapter 5.
(a) Determine which patterns, if any, you already applied, without knowing it.

(b) See if you can improve your class diagram by applying one or more of the
patterns discussed in this chapter.

Focusing on users and their tasks

The vast majority of software is developed for human beings to use. In this
chapter we will show you how to design software for users and how to keep users
involved in the process of design. In fact, we will show that if you do not involve
users, it will be very hard for you to develop usable software.

In Chapter 4, we showed you the first steps towards involving users in
software engineering: one such step is requirements analysis which includes
interviewing, brainstorming and use case analysis. In this chapter we will
introduce the concept of user-centered design. We will also show you how to
create and evaluate designs so as to ensure that they are usable - usability is one
of the important software qualities that we discussed in Chapter 1.

In this chapter you will learn about the following
M Characteristics of users that every software engineer should understand.

M Various ways of working with users to ensure that a software system has both
the required functionality and the required usability.

M Some basic principles for the design of simple graphical user interfaces
(GUIs), involving windows, menus, icons and pop-up dialogs.

B How to evaluate user interfaces.

M How to implement basic GUIs in Java.

254| Chapter 7

Focusing on users and their tasks

Users and eXtreme Programming /. User-centered design

One of the tenets of the agile method,

eXtreme Programming, mentioned in During the 50-year history of COl’IlplltiIlg, software
Chapter 1, is that there should at all developers have often failed to involve users adequately
times be a user representative present in the development process. For example, during

and working with the developers. requirements analysis, they have tended to
communicate with customers and management, but

have often ignored the users. They have then designed,
implemented, tested and installed the software, and finally said to the users: ‘It’s
ready to use!” A typical response from the users to this is, ‘No, it’s not! This lacks
functions we need to help us get our work done, it’s hard to understand and it’s
time-consuming to use. In situations like this, the software is either not used or
has to be extensively, and expensively, modified.

User-centered design (UCD) is the term used to describe approaches to
software development that focus on the needs of users. Software development
approaches that incorporate UCD can help ensure that extensive and expensive
modifications are not needed.

Ways to make software development user centered
Many different activities can contribute to making a development process user
centered. The following are some of the most important:

M Understand your users. Knowing the characteristics of your users allows you
to design a system that matches their level of knowledge, their abilities and
their preferences. We will discuss this in the next section.

M Design software based on an understanding of the users’ tasks. Software
needs to facilitate the user’s work. Performing use case analysis, as discussed in
Chapter 4, is the recommended way to ensure this occurs.

M Ensure users are involved in decision-making processes. Rather than
involving users to a limited extent in requirements analysis, it is better to
involve them extensively throughout development. Users cannot be expected to
participate in detailed low-level internal design decisions. However, they
should be involved in all decision making that relates to the requirements and
to the user interface design.

B Design the user interface following principles of good usability. Following
well-researched UI design principles and guidelines naturally leads you to
think about users and their needs. We will study some important usability
principles in Section 7.4.

B Have users work with and give their feedback about prototypes, online help
and draft user manuals. One of the best ways to ensure that users are involved
is to develop software iteratively and to involve users in the evaluation of
prototypes and user documents. We will look at evaluation of user interface
prototypes in Section 7.5.

Section 7.1 | 255

User-centered design

The importance of focusing on users

User-centered design techniques can significantly improve the quality of the
software. They can also reduce the cost to produce, operate and maintain it.
Here are some of the clear benefits:

M Reduced training and support costs. Large amounts of money are spent both
training users to use software and running help desks which support users who
have difficulties. If software is designed so that it is more intuitive to use, then
its users will need less training and help.

B Reduced time to learn the system. Even if users do not take training courses,
they still have to invest time to learn how to use the software. The time users
spend learning software is a hidden cost that cannot be as easily measured as
the cost of training courses and help desks. UCD techniques are particularly
effective at reducing these hidden costs.

B Greater efficiency of use. Another hidden cost is the amount of time that users
take to do their work with the system, once they have learned how to use it.
UCD techniques can highlight a system’s inefficiencies and help to make it
faster to use. For example, you might discover that users have to enter
unnecessary data, type too many keystrokes, or constantly open and close
dialog boxes. Helping users speed up their work can save their employers large
amounts of money.

M Reduced costs by only developing features that are needed. Without UCD,
developers will likely add features that are little used, and hence become
‘shelfware’ Development of these features is a waste of money and time. In
Chapter 4, we discussed the importance of cutting unnecessary features from
requirements; UCD helps you choose which features to keep.

M Reduced costs associated with changing the system later. Without UCD,
important features will likely be omitted, hence they will have to be added later.
If the software is not flexible and maintainable, this is expensive; but even if the
missing features can be easily added, the delay will cost money.

M Better prioritizing of work for iterative development. UCD techniques
permit developers to understand which features should be developed for the
first release, and which can be delayed until later. UCD can therefore ensure
that the most important features reach the users sooner, and hence the users
can start reaping the benefits sooner too.

B Greater attractiveness of the system means that users will be more willing to
buy and use it. Many systems have discretionary patterns of use — users may be
able to use competing software or to avoid using any software at all. Benefits
from the software can only be achieved if the software is attractive to users.
UCD techniques can help developers learn what qualities are likely to make
users actively choose to use the software.

256|

Chapter 7

Focusing on users and their tasks

Exercise

EI36 Think of a reasonably complex piece of software with which you have

experience (e.g. an operating system, word processor or spreadsheet). Answer
the following questions about that system:

(a) Do typical users require training to use this software to its full capacity? Is
there anything in the software that could be improved so that less training
would be needed? Remember that, as a computing student or professional,
you probably have considerable experience with a variety of different
software packages; you can therefore figure out a new program much more
easily than the average person.

(b) What aspects did you find most difficult to learn when you learned the
software? Are there any aspects of the system that you deferred learning
because they appeared too complex?

(c) Do you ever find yourself wishing that you could use the software more
quickly? What could be improved about the software that would allow you
to work faster?

(d) Are there any features that you never use? Do you think that removing the
features might make the system easier to use? Or, conversely, do you take
comfort in knowing that the features are available, in case you should ever
need them?

7.2 Characteristics of users

The first activity that you should perform as part of user-centered design is to
understand your users. In Chapter 4, we pointed out that this is something you
should start to do in domain analysis, and as the first step of use case analysis.

The following are some of the characteristics that can vary from user to user.
As you design software, think about how these characteristics apply to your
particular users.

Goals for using the system. Different types of users have different job
functions or roles, and therefore have different goals. These goals will lead the
users to want different features, and to place different levels of importance on
each feature. Understanding goals is critical to defining the problem to be
solved, as discussed in Chapter 4, and to choosing an appropriate set of use
cases.

Potential patterns of use. For some users, using the system may be optional. The
task they would use the system for may not be an essential part of their work, or
they may have some alternative way of doing the task. Other users might have no
choice but to use the system. Some users may only use the system occasionally —
they will therefore have to relearn it every time they want to use it.

Section 7.2 | 257

Characteristics of users

B Demographics. Demographic variables, such as the age ranges of your users,
their educational background, their language and culture, and their geographical
location, will all have an influence on the software design. For example,
software that is used by adults in their employment will have different
characteristics from software that is to be used by children. Special attention
will have to be paid if the software is to be used equally by both groups, in the
case, for example, of a web search engine.

B Knowledge of the domain and of computers. If the users of software are
experts in a domain, then the software does not have to provide explanations of
concepts and terminology that should be known by those experts. For example,
a diagnosis assistant to be used by physicians could assume that its users
understand basic anatomy. On the other hand, software that is to be used by the
population at large must be significantly simpler to use, providing explanations
of all terms that are not in common use. Also, software that is to be used by
people who are experienced computer users can be more complex than
software that is to be used by people who have little knowledge of computers.

B Physical ability. You cannot assume that all users can see and hear. Others may
have difficulty using a keyboard or a mouse. You must therefore ensure that the
software can interact with devices that help people with disabilities to use it.
Some disabilities are quite subtle, such as color-blindness: if you rely on people
seeing colors, your application becomes unusable by many people.

B Psychological traits and emotional feelings. There are many psychological
factors that should be taken into account when designing a system. Many of
these relate to the capabilities of human memory and attention (how well
humans can focus on a task). For example, a large percentage of the population
has to think in order to distinguish right from left — these people (one of the
authors included) tend to make mistakes if asked to do so in stressful
conditions. Some people have emotional reactions to particular color
combinations or imagery. Others might feel a personal attachment to ‘the way
they used to do things. Finally, people vary in how easily they get frustrated, or
whether they will tend to explore a system out of interest, rather than merely
using it to get their task done. We recommend that a psychology course should
be part of the basic training of a software engineer.

Exercise

EI37 Imagine you are planning to develop the following types of software projects.
What different kinds of users should you anticipate? Consider each of the
issues mentioned above.

(a) An air-traffic control system.

(b) The GANA GPS-based navigation system discussed in Chapter 4.

258

Chapter 7

Focusing on users and their tasks

Correctly distinguishing left from right in an interface can be critical

On 8 January 1989, British Midland Flight 92 had just taken off from Heathrow, heading towards
Belfast. Unfortunately, the left engine started emitting smoke and lost power. A Boeing 737 is capable
of flying with just one engine. However; the cockpit indicators did not give a strong enough indication
about which engine was in trouble; the pilots mistakenly thought the right engine had the problem
and shut it down instead. Flying with one engine shut down and the other in trouble, the plane
crashed while attempting to make an emergency landing. Of the 126 people on board, 47 died. Many
people believe that an improved cockpit user interface could have averted this disaster. For more
details, see http:/pw2.netcom.com/~asapilot/92.html.

(c) A microwave oven.

(d) A payroll system.

7.3 The basics of user interface design

As with many other areas of software engineering, user interface design is the
topic of entire books, some of which are listed in the ‘For more information’
section at the end of this chapter. It has been left out of many general software
engineering books because it has historically been seen as a separate discipline.
In the early days of computing, user interfaces were much simpler, and the bulk
of software design work went into databases and algorithms. In today’s world,
the user interface is often the most complex part of the system to design. It can
take over half of all development effort and is the part that is most likely to cause
users to perceive a lack of quality.

User interface design is therefore an essential skill that all software engineers
should possess. In this section and the next, we want to highlight some of the
most important things that every software developer should know about this
topic.

User interface design should be performed in conjunction with other software
engineering activities. Prior to UI design, you should have done some domain
analysis and made a first attempt at defining the problem. You can then employ
use case analysis to help define the tasks that the UI must help the user perform.
Next you can begin an iterative process of user interface prototyping in order to
address the set of use cases that you have identified. During the prototyping
process you will refine both the Ul and the use cases. Eventually, results of the
prototyping process will enable you to finalize the requirements for the
delivered system.

We will present various UI design guidelines in the next section. However, no
matter how many guidelines a group of software engineers follow, it would be
very arrogant of them to believe they could develop a perfect user interface on
their own. The iterative prototyping process must involve extensive discussion

Section 7.3 | 259

The basics of user interface design

with, and evaluation by, both users and other user interface designers. We will
discuss techniques to do this in Section 7.5.

Usability versus utility

The overall usefulness of a software system can be considered on two quality
dimensions:

B Does the system provide the raw functionality to allow the users to achieve
their goal? In other words, does it store the right data, allow the right
operations and do the right calculations? This quality of a system is often called
its utility.

B Does the system allow the users to learn and to use the raw capabilities easily?
This is usability.

Both utility and usability are essential. It is possible to have one without the
other, but such a system would be useless. For example, you could imagine a
system with very powerful computational capabilities but which is extremely
difficult for its users to understand. At the same time, you can imagine a system
that is easy to use, but which does not do the correct calculations or store the
data a user needs. Both systems would be rejected, for different reasons.

Both utility and usability must be measured in the context of particular types
of user (i.e. particular actors). Users with one set of tasks to perform will judge
the utility differently from users with different sets of tasks to perform. Also,
users with different levels of computer experience and different patterns of use
will perceive usability differently. Power users of computers will be able to
quickly learn software of considerable complexity, and will then insist that the
software allows them to do their job as rapidly as possible. However, users who
only occasionally use the software, or are less computer literate, will be more
concerned with how easy it is to learn.

Aspects of usability

Usability can be divided into four separate aspects: learnability, efficiency of use,
error handling and acceptability.

Learnability is a measure of the speed with which a new user can become
proficient with the system. Learnability can be improved in two ways: by having
fewer things to learn, or by making the learning process more intuitive.
Beginners will perceive a system to be easier to learn if the complex features are
hidden from them initially. This can be done by having separate ‘beginner’ and
‘expert’ interfaces. The expert interface might, for example, have additional
menu items, fields and buttons. It is common to describe learnability in terms of
learning curves, illustrated in Figure 7.1. For example, a user might be able to
learn the most important 20 functions of the system in 3 days if the system is
simple and intuitive, in 7 days if the system is simple but non-intuitive, and in
11 days if the system is complex and non-intuitive.

260

Chapter 7

Focusing on users and their tasks

Figure 7.1

Q 100
>
2
8
< 80 T o
© _— omplex system,
% — . hard to learn
£ e
= .
Q
g 60 e
_2 / Simple system,
- ’ easy to learn
< 0 ——
2 40 RIS Simple system,
2 / hard to learn
> .
s ' /,/
N .
(9] s
20 . -
—g -
2 —
] /,/ -
R o=
1 5 10 15 20 25 30

Days of learning

Various learning curves

Efficiency of use is concerned with how fast an expert user can do his or her
work using the system. Suitable metrics for this are: the total number of
instances of a small task that a user can do per hour, or the total time required
to do a certain large task.

Whereas efficiency of use and learnability consider ordinary use, the
effectiveness of a system at handling errors is concerned with abnormal
situations. A system is better at error handling if it prevents the user from
making errors, if it helps the user to detect errors, and if it helps the user to
correct errors. The following are suitable metrics for these three aspects of error
handling:

Error prevention: Compute the number of error messages that appear per hour
of use; a lower number is better.

Error detection: Count the number of errors a user notices, and divide this by
the total number of errors the user makes. Note that some errors, such as
navigating to the wrong place, do not result in error messages; these may or
may not be noticed by the user.

Error correction: For each error the user makes, measure the time that elapses
from when the user detects the error, to when the user has corrected the error.
To compute the percentage of time spent correcting errors, sum the time spent
correcting all errors and divide the result by the time spent using the
application.

Acceptability measures the extent to which users like the system. A system may
be learnable and efficient to use, but if users do not like it they will resist using
it. Acceptability is a purely subjective phenomenon to which many factors

Section 7.3 | 261

The basics of user interface design

contribute. Various other aspects of usability contribute to it, as does the graphic
design.

Basic terminology of user interface design
User interface designers use specific terms that you should understand:

Dialog The word dialog (also sometimes spelled dialogue) is used generically to
describe the back-and-forth interaction between user and computer. The terms
dialog or dialog box are used to mean a specific window with which a user can
interact, other than the main UI window.

Control or These words are used interchangeably to describe specific components of a
widget user interface. Typical widgets include menus, lists, input fields and scroll
bars.

Affordance The affordance is the set of operations that the user can do at any given point in
time. Examples of operations include typing into an input field, clicking on a
button or selecting an item from a menu. Clicking a button or selecting a menu
item are commands because they cause the system to perform some
computations. UI designers say ‘a button affords clicking’ if clicking on it would
cause some action to occur.

State Atany stage in the dialog, the system is displaying certain information in certain
widgets, and has a certain affordance. Taken together, these are the system’s user
interface state. The Ul state usually changes when the user issues a command. It
also changes when the system itself notifies the user of some happening, such as
the completion of an earlier command or the arrival of a message.

Mode A mode is a situation in which the UI restricts what the user can do - that is, it
restricts the affordance. For example, if a dialog appears saying ‘Do you really
want to delete a file?” and all the user can do is click ‘Cancel’ or ‘OK, then the
system is in a mode.

Modal dialog A modal dialog is one in which the system is in a very restrictive mode. The user
cannot interact with any other window until he or she has dismissed the modal
dialog. The most restrictive type of modal dialog has a single ‘OK’ button to
dismiss the dialog. A non-modal dialog is a separate window with which the user
can choose to interact, but is not forced to. Palettes and toolbars are examples of
non-modal dialogs.

Feedback Whenever the user does something, the response from the system is called
feedback. Feedback includes displaying a message, changing a color or
displaying a dialog.

Encoding These are ways of representing information so as to communicate it to the user.
techniques Tables 7.1 and 7.2 list some of the most common encoding techniques, along
with their advantages and disadvantages.

262| Chapter 7

Focusing on users and their tasks

Table 7.1 Ways of encoding information to be transmitted using sound. Unless backed
up by visual cues, these are inaccessible to deaf people

Medium

Uses and advantages

Problems

Spoken words

Music
Abstract sounds (e.g. beeps)

All of the above

Essential when there is no screen or
only a small screen (e.g. a telephone
system). Important for blind people
who otherwise must rely on tools
that convert text into Braille

Can convey mood. Can add
attractiveness

Can give useful feedback about
actions that are taking place

Attract attention rapidly at onset,
even if the person is not looking at
the screen

Can be overheard, violating privacy.
Sequential, therefore the user has to
request replay if he or she misses a
part. Slower for most users than
reading text

Does not usually convey meaning.
People have different tastes in music

Can be hard to interpret

Can be distracting and annoying

74 Usability principles

In this section, we discuss twelve principles that you should apply when
designing and evaluating a user interface. After we list the principles, we will
give an example of a user interface that violates many of these principles, as well
as an improved version of the same system.

The twelve principles

Usability Principle 1: Do not rely only on usability guidelines — always test with users

Each situation is different and there are exceptions to the principles in this
section. You should therefore ask the opinions of users and evaluate how they
use prototypes. Evaluation is the topic of Section 7.5.

Usability Principle 2: Base UI designs on users’ tasks as expressed in use cases

Perform a first iteration of use case analysis and then design the UI based on
this. As you evaluate your prototype UI, you will have to go back and revise your
use case model as well as your UL

Usability Principle 3: Ensure the sequences of actions to complete a task correctly are as simple as

possible

Make sure users can move from step to step easily as they perform their tasks.
You want the user to have to read the smallest amount of text, to navigate the
least, to type the least and not to be led into making errors. In particular, make
sure the user does not have to select menu items repeatedly to complete a
single task. Also, avoid sequences of modal dialogs, since they slow users

Section 7.4 | 263

Usability principles

Table 7.2 Ways of encoding information to be transmitted visually. Except for text,
which can be spoken or converted to Braille, these are generally inaccessible
to blind people

Medium Uses and advantages Problems

Text written in a language the Has unlimited ability to express

user can read meaning. Simple to generate and
display. Accessible by blind people
using Braille translators

Fonts (including font family, Add emphasis to text, and reinforce
as well as bold, italics and size its structure, thus simplifying and
attributes) highlighting information

Icons (simple and abstract ~ Allow many commands or objects

graphics, each representing a to be listed in less space than is

specific action or object) possible with text. Users can scan
the screen to find an icon faster than
they can scan to find particular text

Diagrams (convey objects Can communicate or summarize

and their relationships) complex concepts or mechanisms
more easily than other techniques

Photographs and hand- Can help users better appreciate

drawn images of reality reality

Animations and video Provide high impact

communication of complex
information. Entertaining and
hence attractive for users

Purely decorative graphics Make the interface attractive and
helps to emphasize its organization

Colors Draw attention to specific items.
Convey organization (items colored
similarly are related). Makes the Ul
more attractive. Users can almost
instantly notice a small spot of color

on the screen

Grouping, bordering and Help to convey the organization of
organizing in columns or information and reduce its
tables perceived complexity

Flashing Rapidly draws attention to items

Takes a lot of space. Writing clearly
and unambiguously is hard. Not
usable by young children or the
illiterate. Hard for users to scan
quickly

Using too many fonts results in
confusion and a cluttered
appearance. Decorative or unusual
fonts can be distracting

Notoriously difficult for users to
interpret or distinguish. Require
artistic skill to create

Can be hard for users to interact
with or interpret. Can be expensive
to generate automatically

Can take alot of space on screen and
can slow response time due to
downloading

Bandwidth-intensive, hence reduce
response time. Sequential, requiring
replay if users miss parts. Users
cannot quickly scan them.
Expensive to produce. May be
annoying

Can be distracting or annoying

Users cannot distinguish among
large numbers of colors. Some color
combinations clash. Color-blind
people cannot see differences in
hue. Some colors (e.g. bright red)
can be distracting if overused

No problems

Distracting and annoying. Fast
flashing can cause epileptic seizures
and migraine headaches

264|

Chapter 7

Focusing on users and their tasks

Usability Principle 4: Ensure that the user always knows

down and give them the feeling that = The importance of analyzing the

the computer is in control of the task and interacting with users

interaction. One of the reviewers of this book
relates the following story. Some
designers had put considerable work
into developing a new graphical user
interface to control an existing piece of
hardware more easily. The Ul team
were excited about the way the
system would give the hardware
operators easy access to all sorts of
information. However, when they
showed the system to the users, one
of them said, ‘VVell, | guess that’s nice,
but all we need to do is press “Start”

999

and “Stop”:

what he or she can and should do next,
and what will happen when he or she
does it

At any one time there are usually
several things that a user can do next -
i.e. the system affords several possible
actions. Perhaps the user can click on
one of several icons, select one of
several menu items, or type data into
one of several fields. When designing
the U, take note of all these things the
user should be able to do; make sure
that the user can clearly see how to do
all the things that are possible, and ‘gray out’ those options that are temporarily
not available. Make the things the user will want to do most often stand out; they
could be larger, in a separate box, or colored more brightly. The consequences
of each action should also be clear.

Usability Principle 5: Provide good feedback, including effective error messages

Example 7.1

When a change of state occurs, make sure it is clearly visible to the user. Some
specific guidelines are:

If some operation is taking more than a few seconds, provide a progress bar so
that the user knows what is going on.

Always keep the user informed about where he or she is located among the
various windows and pages.

Communicate clearly to the user when something goes wrong, regardless of
whether the problem arises from the user making a mistake, or from a problem
with the system itself. Error messages should be informative, telling the user
the exact thing that has gone wrong and exactly how to correct the problem, if
that is possible.

Imagine you are maintaining a program that has to write some data to a specific
file. Whenever the program fails to write to the file, for any reason, it currently
displays the message: “Error 34 writing file”. Describe how this message could be
improved.

. The message number should not be shown, since this is disconcerting for the

user to see.

Section 7.4 | 265

Usability principles

2. The message should state which file (including which directory) could not be
written.

3. The message should tell the user the reason or reasons why it could not write
the file. These might include: the existing file is write-protected (for everybody
or for specific users), the directory is write-protected, the file system is
inaccessible (if it is on a network), the file is locked by another program, there
is not enough space to write the file, or the disk appears to be damaged.

4. The message should give the user as much information as possible to help him
or her to solve the problem. Such information might include: a) the name and
login ID of user who has permission to write to the file or directory, b) the
name and process ID of the program that is locking the file, and ¢) how much
space must be freed before there is enough space to write the file.

Usability Principle 6: Ensure that the user can always get out, go back or undo an action
Users will always make mistakes; they will issue incorrect commands or
navigate to somewhere they had not intended to go. Therefore you must ensure,
where possible, that the user can back out of any action.

In particular, make sure that users can easily undo any operation, even if it has
resulted in changes to data. Also make sure that they can easily exit any dialog
box and cancel any operation in progress. Providing both these facilities helps
users to recover from mistakes, and ensures that they are not afraid of
experimenting with the system.

Occasionally it is not possible to undo an action - for example, formatting a
disk. If such an action may have serious consequences, you should warn users
before they perform the action, and ask them to confirm that they really want to
do it.

Usability Principle 7: Ensure that response time is adequate
Response time is the time that elapses from when a user issues a command (by
selecting a menu item, clicking on an icon etc.) to when the system provides
sufficient results that the user can continue his or her work. Response time can
be a problem when processing large volumes of information or transmitting
data over a network.

Users” perceptions of what is acceptable are determined largely by other
applications they use. If your application runs more slowly than users are
accustomed to, then users will have a sense that the system is wasting their time.

Operations such as the popping up of menus and echoing of input should
appear instantaneous to users. Most other operations should take a second or
less, so that the user’s train of thought is not interrupted. A few operations may
be allowed to take up to about 10 seconds if the user understands that they are
naturally time-consuming. An example is loading a complex web page over a

266

Chapter 7

Focusing on users and their tasks

slower network connection. Unfortunately, many web sites force users to
download excessively large images.

If an operation is to take more than about 10 seconds then warn users in
advance. This gives them the opportunity to choose not to perform the
operation, and reduces their annoyance with any delay.

When you evaluate a user interface, work on the slowest hardware that end-
users are likely to encounter. We suggest assuming that some users will be
working with computers that are up to three years old.

Usability Principle 8: Use understandable labels and other encoding techniques

Everything that appears on the screen should be easily understandable to users.
This includes all feedback, all elements of the affordance (e.g. buttons) as well as
other information for the user. Refer to Tables 7.1 and 7.2 to select encoding
techniques. Also:

Avoid technical jargon and acronyms.

Employ technical writers to compose text and graphic designers to create
graphics.

Label items so that their meaning is obvious. You can place captions
underneath them or provide pop-up labels that appear when the user moves
the mouse over them.

Usability Principle 9: Ensure that the UI's appearance is neat and uncluttered

A very common error among UI designers is to provide users with too much to
look at. This distracts users, slows them down and makes it harder for them to
learn the system. Web pages are especially prone to information overload,
particularly with the presence of advertisements.

Messiness of the layout and graphic design can also be distracting, and results
in the user taking longer to figure out how to use the interface.

To achieve a neat, uncluttered UI:

Only display essential information, but provide a way for the user to request
additional information.

Avoid having large numbers of dialogs that each display only a small amount of
information: the user may become lost trying to navigate your system.

Highlight information that belongs together using boxes, colors and fonts. For
example, place a box around related items in a form, and use horizontal lines to
separate related items in a menu.

Avoid using too many different colors, fonts or graphics.

Line up labels and input fields so that users can more quickly read what they
have to enter.

Section 7.4 | 267

Usability principles

Usability Principle 10: Consider the needs of different groups of users

Earlier, we pointed out that there are different types of users, each with their
own needs. You should accommodate the needs of the following categories of
people:

B People from different locales. A locale is an environment where the language,
culture, laws, currency and many other factors may be different. Table 7.3 lists
some of the things that differ among locales. When designing a U, it is
important to internationalize it, which means ensuring that it can be easily
adapted to different locales. Adapting the system to a particular locale is called
localization.

B People with disabilities. People have many kinds of disabilities. To
accommodate blind people, ensure that your application works with programs
that convert text to Braille or speech. For example, when displaying an image in
a web page, use an ‘alt’ html tag that describes what the image shows. To
accommodate deaf people, ensure the system has visual output that conveys the
same information as the sound. To accommodate physically disabled people,
ensure that your application can interact with software that permits voice
input.

B Beginners versus experts. In complex applications, provide a simple mode for
beginners, and a fully functional mode for experts. The expert mode would
have more icons and fields as well as more items in menus.

Also, consider providing a ‘preferences’ dialog, to enable users to tailor the
system to their particular needs.

Localization and internationalization in Java and in operating systems

Operating systems have to display locale-specific information. This means that you can query the
operating system to obtain such information when programming a user interface. However, different
operating systems store different types of locale information.

Java has its own class called Locale that it uses to format numbers, etc. You can use this
as a basis for decisions about locale-specific Ul features. Java sets the default locale based on
what is set in the operating system. However, many of the issues listed in Table 7.3 are not
automatically managed by Java.

Java has classes called Calendar and DateFormat which allow for the use of the calendars of
specific cultures,and a class called TimeZone which deals with the difference between Universal
Time Co-ordinated (UTC or GMT) and local time.

Usability Principle 11: Provide all necessary help

Ensure that users can easily and quickly access relevant and easy-to-understand
help about anything they are trying to do. It should be the objective of UI design
to make the system good enough such that users will rarely need to access the
help, but it is nevertheless essential to have online help as a backup.

268|

Chapter 7
Focusing on users and their tasks

Table 7.3

Some types of information that can differ among locales

Locale-dependent feature

Issues the UI designer needs to be aware of

Language

Character set and fonts

Direction for reading text

Collating sequences (sort order of words)

The order and components of peoples’
names.

Currency and format for displaying
currencies

Time zones

Format for dates, times and numbers

Calendars and holidays

Formats for phone numbers, addresses,
postal codes, credit card numbers, etc.

Laws and business practices

Icons and metaphors

Different languages use different amounts of space, different
character sets, different fonts, and run in different
directions. Employ a skilled technical translator and ensure
he or she runs the system in both languages to verify it

Unicode can handle most world character sets, but you also
have to ensure that appropriate fonts are available

Text in some languages runs left to right or top to bottom.
Laying out screens so that they can automatically
accommodate this is a challenge

Some languages order characters with accents or diacritics at
the end of an alphabet, whereas others order them as if the
accent or diacritic were absent. Often, the sort order for
names in phone books is special

Family name comes first in some cultures, last in some, and
is non-existent in others. In some cultures, a person’s legal
name differs from their commonly used name. Salutations
such as Mr and Dr vary widely

An application may use more than one currency at once.
The number of decimal places and the magnitude of values
may differ widely. The language somebody uses may not
correspond to the currency they use

Time-zone abbreviations are not used consistently. Daylight
savings time starts and ends on different dates in different
places, or may not exist at all

There are many ways of writing dates, times and numbers.
Even though the international standard is YYYY/MM/DD,
this is often not followed

Although international business is based on the Gregorian
calendar, the calendars of particular cultures and religions
are also used in some places

You should almost never require a specific format for these
items since they differ so widely and can change at any time.
Allow free-form input of whatever the user wants to type. A
common error is not to allow sufficient characters, or not to
allow extensions to be recorded for telephone numbers

You have to accommodate different ways of calculating
taxes, performing accounting, or keeping records. Patents
and other regulations might place restrictions on designs

Icons and other encoding techniques can invoke different
impressions in people of different cultures

Section 7.4 | 269

Usability principles

When you develop help, remember that users are often frustrated when they
seek help. Be sure, therefore, that the help system does not increase this
frustration.

Focus on help that guides the user through the steps of a task. But avoid help
that explains all the details at once. Integrate help with the application, making
it context sensitive. For example, allow the user to point to some aspect of the
UL or to an error message, and obtain an explanation of it.

Ensure that the help can be easily searched, and that searches retrieve relevant
help.

Usability Principle 12: Be consistent

Once users learn how to use one application or dialog, it is a big advantage to
them if other applications and dialogs work the same way. Be consistent,
therefore, within your own application, make your application follow the
standards of the operating system on which it runs, and consider mimicking
aspects of other applications. However, ensure that you are not infringing
copyrights or patents, and avoid duplicating weaknesses.

An example user interface

Figure 7.2 shows parts of a user interface that has several problems. Figure 7.3
shows the same system after improvements have been made. Before reading on,
see how many problems you can find in Figure 7.2.

Here are some of the specific problems found in Figure 7.2, and the
corresponding improvements made in Figure 7.3.

M The instructions in Figure 7.2(a), “To sign up, use the Edit menu’ violate
Principle 3. Forcing the user to select a menu item in order to start entering
information is more complex than is necessary. In Figure 7.3, the user simply
has to click on the ‘Start’ button.

M Although the Edit menu of Figure 7.2(a) shows that the user can add three
different kinds of information, there is no indication about the order in which
the information should be filled in. Nor is it clear how to finish the sign-up
process. These problems violate Principle 4, since the user will not know what
to do after completing each step. Figure 7.3, on the other hand, uses a ‘wizard’
interface: the user can step through the various steps by clicking on ‘Next>>]
which is prominently visible. Figure 7.3 also numbers each step, which is useful
feedback, better conforming to Principle 5.

M In Figure 7.2(a), one of the menu items is ‘Add Addresses.... The intent is to
allow the user to specify more than one address (e.g. home, work etc.), but this
is not clear. Also, in Figure 7.2(b) there is a field labeled ‘type’ that is supposed
to contain the type of address (home, work, etc.), but the user will probably not
understand what to put there. These are both violations of Principles 4 and 8,
which require clear instructions and labels. In Figure 7.3, on the other hand, a

270 | Chapter 7

Focusing on users and their tasks

Figure 7.2

[=3 Dotumlia Sign Up IS [=] 3 [Ootuniia Sign Up B [E
File Edii‘ Help Personal Information
Personal Info... Name: |
Add Addresses...
~ Your Email:
Add Senices...
OK Cancel
Welcome to
Ootumlia Services
Street: [J
To sign up, use the Edit menu l ‘
Country: [J
Postal Code: | J
Phone: [J
Type: [J
OK ‘ | Cancel |
(a) (b)
[Dotumlia Sign Up IS [=] E [Ootuniia Sign Up B [E
Payment
Name: H
MNumber: ‘ Signing you up..
Expiration date:
Amount: $20.00
Cancel ‘ | OK Cancel
(c) (d)

Parts of the user interface of an Internet Service Provider sign-up application that
has several usability problems

‘tabbed dialog’ is used that makes it clearer to the user how to add several
addresses.

In Figure 7.2 there appears to be no way a user can delete a secondary address
once he or she has added it. This violates Principle 6, which states that all
actions should be undoable. The ‘<<Prev’ button and the tabbed dialog make it
much easier for users of Figure 7.3 to change any data they have input.

Figure 7.2(b) and (c) are modal dialogs, since they only have ‘OK” and ‘Cancel’
buttons. This is another violation of Principle 3. Figure 7.3’s ‘wizard’ interface is
preferable.

Figure 7.2(b) has two sets of ‘OK’ and ‘Cancel’ buttons. The user will not
understand the reason for this, violating Principles 4 and 8. They also add clutter,
violating Principle 9. The duplicate buttons have been removed in Figure 7.3.

Figure 7.3

Section 7.4 | 271

Usability principles

[Ootumlia Sign Up _ (O x| [Ootumlia Sign Up _ (O x|
Step 1: Personal Information El
Name: ‘ ‘
Welcome to Existing Email: | |
Ootumlia Services
[Home |Work] Maiing |
To sign up, click on Start
Street: | J
[|
Country: | |
Postal Code: | |
Phone: | J
‘ ‘ | Start << Prev ‘ | Hext »> |
(a) (b)
[Dotumlia Sign Up IS [=] E [Ootuniia Sign Up B [E
Step 5: Payment El
(@ Amex D visa () MasterCard
The systern is now dialing in
Humber: ‘ to reqister you for our senices.
Expiration date: ‘ ‘
Total monthly fee: $20.00 Please stand by.
My credit card will be debited
the first day of each month
for the above amount -
About 5 seconds remaining...
<< Prev ‘ | Cancel | ‘ lagree
(c) (d)

Views of the ISP sign-up application that has improvements compared with Figure
7.2 . It uses a ‘wizard’ approach as well as tabbed dialogs

In Figure 7.2(b), the ‘OK’ button is on the left, and the ‘Cancel button is on the
right. This the reverse of what normally appears, violating Principle 12. It is
also likely to lead the user to press the ‘Cancel’ key accidentally, violating
Principle 3. In Figure 7.3, the button the user would be most likely to select is
always located at the bottom-right corner.

The layout of Figures 7.2(b) and (c) is messy and inconsistent, violating
Principles 9 and 12. In Figure 7.3, all the labels are right justified, and all the
input fields line up with each other.

Figure 7.2(c) has a field labeled ‘Name’ which is ambiguous and violates
Principles 4 and 8. Most users would assume the field is asking for the person’s
name, but why is system asking for it again? The intent is that the user enters
the type of credit card (Visa, MasterCard, etc.) but this is very obscure.
Figure 7.3(c) allows the user to select the card type making this much clearer.

272

Chapter 7

Focusing on users and their tasks

B The feedback about the amount owing in Figure 7.3(c) is better than that of

Exercises

EI38

EI39

EI40

El4l

Figure 7.2(c), since it is clear that the amount is a monthly payment
(Principle 5). Also, the user is clearly told that by clicking on T agree’ he or she
is agreeing to payment; it is not clear that this will occur by pressing ‘OK’ in
Figure 7.2(c). This violates Principle 4.

The feedback provided in Figure 7.2(d) is very weak, violating Principle 5.
Figure 7.3(d) gives the user much clearer feedback about what is going on as
the system connects to the remote site. The feedback includes a progress bar
and an estimate of the number of seconds remaining.

In Figure 7.2, there is no clear way to access help, violating Principle 11.
Figures 7.3(b) and (c) have ?” buttons to provide this capability.

Describe the error messages that will need to be displayed in each of the panels
shown in Figure 7.3.

You are asked to design the GUI for a software application that can convert
audio files from one format to another.

(a) Use the twelve usability principles to draw a paper prototype of this GUIL
(b) Describe how you have adhered to each of the twelve usability principles.

(c) Obtain an application that does the same thing and compare your GUI to
this one. There are free applications available on the Internet.

Imagine your goal is to develop a web-based application to access your voice
messaging system (or your answering machine). This application can allow you
to select messages, play them, drag messages to other applications, etc.

(a) Create a use case model for this application.

(b) Draw the interface of this application. Pay attention to the layout; specify all
labels you would use; propose icons or other encoding techniques to make
your interface more usable.

Draw a paper prototype of the user interface for the GANA system, whose
requirements were presented in Chapter 4. Base your prototype on the textual
description of the UI given in the requirements document, and the use cases
you developed in Exercise E68(b). You will have to fill in some details not
explicit in the textual description, such as the size and shape of buttons etc.

Section 7.5 | 273

Evaluating user interfaces

7.5 Evaluating user interfaces

No matter how well a designer adheres to the principles discussed in the last
section, usability can only be assured by careful evaluation. In this section, we
describe two approaches to evaluation that can be combined to produce a highly
usable system.

Evaluation versus quality assurance

In Chapter 10, we will discuss inspection and testing of software — two quality assurance processes.
These two processes are used to uncover defects resulting, in general, from violation of
requirements.

Heuristic evaluation and usability testing, as discussed here, are analogous to the above
but focus on one particular quality: usability. However, there is an important difference: most
of the usability defects found do not represent violation of explicit requirements in fact, the
recommendations for change resulting from these processes really are new requirements —
requirements that couldn’t be known until you have a system to evaluate. Evaluating usability
therefore cannot be left until you think the design and coding are finished.

Heuristic evaluation

Heuristic evaluation involves systematically examining the system, looking for
usability defects — aspects of the design that might pose problems for users.
Heuristic evaluation is the most popular of several techniques that are
collectively called usability inspection. Usability inspection should be performed
on all software; it can be done by regular members of the software engineering
team, and by usability experts if they are available.

You can perform a heuristic evaluation of a paper prototype, a finished
system, or any intermediate version. It is best to ask two or three people to do
each evaluation independently in order to maximize the number of defects
found.

Use the following steps when you perform a heuristic evaluation:

1. Pick some use cases to help focus the evaluation. Focus initially on the most
important ones.

2. For each window, page or dialog that appears during the execution of the use
cases, study it in detail to look for possible usability defects: violations of the
principles and guidelines (the heuristics) discussed in the previous section. Be
as critical as you can; if you think something has a chance of being a problem
for some user, then consider it a defect. It is better to raise a concern about
something that is actually not a problem than to ignore something that is.

3. When you discover a usability defect, write down the following information:

J A short description of the defect. You may need to include a screen snapshot
if the nature of the problem might not be obvious.

274

Chapter 7

Focusing on users and their tasks

Exercises

El42

El43

El44

E145

J Your ideas for how the defect might be fixed.

Your purpose in recording this information is to communicate with other
software engineers who will be fixing the defect. You can also learn what to
avoid when you next design a user interface.

Find an application that performs each of the following tasks. Perform a
heuristic evaluation based on each task in order to find the situations where it
violates the twelve usability principles described in the last section. Describe
each of the defects you find, and suggest how it could be fixed.

(a) A facility for drawing a graph, in a spreadsheet or statistical application.
Evaluate changing the graph format (e.g. scatter, bar or line), changing x-
and y-axis labels, changing the scale of the axes and adding extra data
points.

(b) Facilities for creating a table in a word processor. Evaluate converting text
into a table, balancing the widths of columns and making the format of a
table look like those in this book.

Download three freeware applications designed to perform the same task.
Perform a heuristic evaluation of each. Select the best and worst one and
explain why you ranked them this way.

Work in groups of two or three to do the following. First, each member of the
group should independently perform a heuristic evaluation of the paper
prototype you developed in Exercise E139 or E140. Then the group members
should get together and study each other’s lists of defects. Determine how many
were found by only one person, how many were found by two people and how
many were found by all three (if you have three members). This exercise should
demonstrate that having more than one evaluator is important.

Perform a heuristic evaluation of the GANA UI that you drew in Exercise E141.
Update your GUI if necessary; also, indicate any requirements that should be
changed based on your Ul review.

Usability testing: evaluation by observation of users

No matter how much work a software engineer puts into user interface design
and heuristic evaluation, some usability problems will exist. It is therefore
essential to carefully and systematically observe users as they use a prototype of
the system, in order to discover these problems.

Section 7.5 | 27 5

Evaluating user interfaces

Some strategies for usability testing include:

Select users corresponding to each of the most important actors. Remember
that a user may have more than one role. Also, try to select people who are both
beginners and experts in the domain, as well as people who are experts and
non-experts in terms of their experience with computers. You will likely learn
different things from observing different types of users; and you will help
ensure that the system is suited to different types of users.

Select the most important use cases for each of the actors you selected in the
last step, and determine specific tasks for the users to follow. Each task should
be a concrete scenario of one of the use cases.

Write sufficient instructions about each of the scenarios so that the users know
what goal they should try to achieve. Record these on small cards so that you
can hand them to the users one at a time.

Arrange evaluation sessions with users well in advance, and leave plenty of
time for each session. Sessions lasting more than an hour are too tiring. A good
length is 20-30 minutes. Work with one user at a time.

At the beginning of the session explain the purpose of the evaluation. In
particular, explain to the users that the objective is to evaluate the software, not
them. Also, make sure that the users understand that their participation is
optional, that they can withdraw at any time, and that whatever happens will be
kept confidential.

Preferably make a video recording of each session. It is very difficult to notice
and record all the details of interactions while observing them live. Studying a
video later will often bring to light important information. However, video
recording can be intimidating to users and may make the logistics of the
session harder to manage. If you do record sessions, then test the camera and
look at a sample recording in advance to make sure the screen is sufficiently
readable. When you look at the recording, you need to be able to understand
what the user is doing (you may not be able to completely read all the text on
the screen). Also make sure that the sound is clearly audible.

Converse with the users as they are performing the tasks. Ask them what they
are thinking, what they think the system’s feedback means, and why they
perform various actions. Encourage them to think out loud.

When the users finish all the tasks, de-brief them. This means ask for their
overall impressions and recommendations.

Analyze any difficulties experienced by the users, no matter how small. There
could be times when they had to seek help, times when they made mistakes, or
times when they had to think or explore before figuring out what to do.

Formulate your recommendations for changes to the system that will avoid
repetition of the difficulties.

276

Chapter 7
Focusing on users and their tasks

Ethics of usability testing

Whenever you observe users as part of the process of studying software, you need to ensure that
you adhere to certain ethical principles. Users may be nervous about participating, may feel an
obligation to perform well, may worry about what their manager or others will think about their
mistakes, and may become frustrated with the system.

First, ensure that the users fully understand the purpose of the study and are made to feel
at ease. They must know that they are volunteers and can stop for any reason. Second,
respect their confidentiality: do not involve managers or other people in the process.
Furthermore, as soon as your recommendations for changing the Ul have been understood
by the developers, all records that mention the names of (or show pictures of) individual
users should be erased.

If you are performing user studies as part of a research activity (i.e. not just for product
development), then even stricter ethical guidelines apply. In such situations, users should be
asked to sign an ‘informed consent’ form that clearly specifies their rights, since they are now
acting as ‘research subjects’.

Exercise

E146 Working in groups of two or three, conduct a usability testing session of some
reasonably complicated web site that interests you. You can each take turns
being the user.

E147 Download two freeware applications designed to perform the same task and
ask two users to use both of them. Follow the usability testing approach
described above. Produce a list of recommendations that would improve the
usability of each of these applications.

7.6 Implementing a simple GUI in Java

After designing the UI abstractly, and evaluating paper prototypes, it is time to
implement it. Java provides two main frameworks for implementing user
interface designs: Swing and the Abstract Window Toolkit (also called AWT).
AWT is considerably simpler, although rather more limited. Other
organizations provide additional frameworks: for example the SWT (Standard
Widget Toolkit) is used in the Eclipse environment (www.eclipse.org).

Due to the volume of details that we would have to provide, and the fact that
GUl libraries change frequently, we will not discuss how to construct a Swing or
SWT-based GUI. However, the basic principles of GUI design in Java remain
the same no matter what GUI library you use.

Under the AWT, building a graphical use